End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +41 -41
- runs/Jun03_14-17-29_a358b85c7679/events.out.tfevents.1717424904.a358b85c7679.134923.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +201 -201
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
"epoch": 20.0,
|
4 |
-
"eval_accuracy": 0.
|
5 |
-
"eval_f1": 0.
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0.
|
8 |
-
"eval_recall": 0.
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 399,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second":
|
13 |
-
"f1": 0.
|
14 |
-
"precision": 0.
|
15 |
-
"recall": 0.
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
"train_samples": 3638,
|
19 |
-
"train_samples_per_second":
|
20 |
-
"train_steps_per_second":
|
21 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9099901088031652,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.899749373433584,
|
5 |
+
"eval_f1": 0.8784574144023395,
|
6 |
+
"eval_loss": 0.29978305101394653,
|
7 |
+
"eval_precision": 0.8804194733619106,
|
8 |
+
"eval_recall": 0.8765684669939988,
|
9 |
+
"eval_runtime": 1.8044,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 221.128,
|
12 |
+
"eval_steps_per_second": 27.71,
|
13 |
+
"f1": 0.8918557700784624,
|
14 |
+
"precision": 0.8914757994814175,
|
15 |
+
"recall": 0.892238579779173,
|
16 |
+
"train_loss": 0.2259816083751741,
|
17 |
+
"train_runtime": 638.5228,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 113.951,
|
20 |
+
"train_steps_per_second": 3.821
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.899749373433584,
|
4 |
+
"eval_f1": 0.8784574144023395,
|
5 |
+
"eval_loss": 0.29978305101394653,
|
6 |
+
"eval_precision": 0.8804194733619106,
|
7 |
+
"eval_recall": 0.8765684669939988,
|
8 |
+
"eval_runtime": 1.8044,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 221.128,
|
11 |
+
"eval_steps_per_second": 27.71
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
-
"f1": 0.
|
4 |
-
"precision": 0.
|
5 |
-
"recall": 0.
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9099901088031652,
|
3 |
+
"f1": 0.8918557700784624,
|
4 |
+
"precision": 0.8914757994814175,
|
5 |
+
"recall": 0.892238579779173
|
6 |
}
|
predict_results.txt
CHANGED
@@ -5,14 +5,14 @@ index prediction
|
|
5 |
3 1
|
6 |
4 0
|
7 |
5 1
|
8 |
-
6
|
9 |
7 1
|
10 |
8 1
|
11 |
9 1
|
12 |
10 1
|
13 |
11 1
|
14 |
12 1
|
15 |
-
13
|
16 |
14 1
|
17 |
15 1
|
18 |
16 0
|
@@ -106,14 +106,14 @@ index prediction
|
|
106 |
104 1
|
107 |
105 1
|
108 |
106 1
|
109 |
-
107
|
110 |
108 1
|
111 |
109 1
|
112 |
110 0
|
113 |
111 1
|
114 |
112 0
|
115 |
-
113
|
116 |
-
114
|
117 |
115 1
|
118 |
116 1
|
119 |
117 1
|
@@ -130,7 +130,7 @@ index prediction
|
|
130 |
128 1
|
131 |
129 1
|
132 |
130 1
|
133 |
-
131
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
@@ -139,20 +139,20 @@ index prediction
|
|
139 |
137 1
|
140 |
138 1
|
141 |
139 1
|
142 |
-
140
|
143 |
141 1
|
144 |
142 1
|
145 |
-
143
|
146 |
144 1
|
147 |
145 1
|
148 |
146 1
|
149 |
147 1
|
150 |
148 1
|
151 |
149 1
|
152 |
-
150
|
153 |
151 1
|
154 |
152 1
|
155 |
-
153
|
156 |
154 1
|
157 |
155 1
|
158 |
156 1
|
@@ -164,7 +164,7 @@ index prediction
|
|
164 |
162 1
|
165 |
163 1
|
166 |
164 0
|
167 |
-
165
|
168 |
166 1
|
169 |
167 1
|
170 |
168 1
|
@@ -176,7 +176,7 @@ index prediction
|
|
176 |
174 1
|
177 |
175 1
|
178 |
176 1
|
179 |
-
177
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
@@ -184,7 +184,7 @@ index prediction
|
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
187 |
-
185
|
188 |
186 1
|
189 |
187 1
|
190 |
188 1
|
@@ -202,23 +202,23 @@ index prediction
|
|
202 |
200 1
|
203 |
201 1
|
204 |
202 1
|
205 |
-
203
|
206 |
204 0
|
207 |
205 1
|
208 |
206 1
|
209 |
-
207
|
210 |
208 1
|
211 |
209 1
|
212 |
210 1
|
213 |
211 1
|
214 |
212 1
|
215 |
213 1
|
216 |
-
214
|
217 |
215 0
|
218 |
216 1
|
219 |
217 0
|
220 |
218 1
|
221 |
-
219
|
222 |
220 1
|
223 |
221 1
|
224 |
222 1
|
@@ -274,19 +274,19 @@ index prediction
|
|
274 |
272 1
|
275 |
273 1
|
276 |
274 1
|
277 |
-
275
|
278 |
276 1
|
279 |
277 1
|
280 |
278 1
|
281 |
279 1
|
282 |
-
280
|
283 |
-
281
|
284 |
282 1
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
286 0
|
289 |
-
287
|
290 |
288 1
|
291 |
289 1
|
292 |
290 1
|
@@ -440,7 +440,7 @@ index prediction
|
|
440 |
438 0
|
441 |
439 0
|
442 |
440 0
|
443 |
-
441
|
444 |
442 0
|
445 |
443 0
|
446 |
444 0
|
@@ -477,7 +477,7 @@ index prediction
|
|
477 |
475 0
|
478 |
476 0
|
479 |
477 0
|
480 |
-
478
|
481 |
479 0
|
482 |
480 0
|
483 |
481 0
|
@@ -485,7 +485,7 @@ index prediction
|
|
485 |
483 0
|
486 |
484 0
|
487 |
485 0
|
488 |
-
486
|
489 |
487 0
|
490 |
488 0
|
491 |
489 0
|
@@ -530,7 +530,7 @@ index prediction
|
|
530 |
528 0
|
531 |
529 0
|
532 |
530 0
|
533 |
-
531
|
534 |
532 0
|
535 |
533 0
|
536 |
534 0
|
@@ -538,7 +538,7 @@ index prediction
|
|
538 |
536 0
|
539 |
537 0
|
540 |
538 0
|
541 |
-
539
|
542 |
540 0
|
543 |
541 0
|
544 |
542 0
|
@@ -551,7 +551,7 @@ index prediction
|
|
551 |
549 0
|
552 |
550 0
|
553 |
551 0
|
554 |
-
552
|
555 |
553 0
|
556 |
554 0
|
557 |
555 0
|
@@ -561,7 +561,7 @@ index prediction
|
|
561 |
559 0
|
562 |
560 0
|
563 |
561 0
|
564 |
-
562
|
565 |
563 0
|
566 |
564 0
|
567 |
565 0
|
@@ -580,7 +580,7 @@ index prediction
|
|
580 |
578 0
|
581 |
579 0
|
582 |
580 0
|
583 |
-
581
|
584 |
582 0
|
585 |
583 0
|
586 |
584 0
|
@@ -610,7 +610,7 @@ index prediction
|
|
610 |
608 0
|
611 |
609 0
|
612 |
610 0
|
613 |
-
611
|
614 |
612 0
|
615 |
613 0
|
616 |
614 0
|
@@ -663,8 +663,8 @@ index prediction
|
|
663 |
661 0
|
664 |
662 0
|
665 |
663 1
|
666 |
-
664
|
667 |
-
665
|
668 |
666 0
|
669 |
667 0
|
670 |
668 0
|
@@ -685,7 +685,7 @@ index prediction
|
|
685 |
683 0
|
686 |
684 0
|
687 |
685 0
|
688 |
-
686
|
689 |
687 0
|
690 |
688 0
|
691 |
689 0
|
@@ -859,7 +859,7 @@ index prediction
|
|
859 |
857 0
|
860 |
858 0
|
861 |
859 0
|
862 |
-
860
|
863 |
861 0
|
864 |
862 0
|
865 |
863 0
|
@@ -869,7 +869,7 @@ index prediction
|
|
869 |
867 1
|
870 |
868 0
|
871 |
869 0
|
872 |
-
870
|
873 |
871 0
|
874 |
872 0
|
875 |
873 0
|
@@ -924,7 +924,7 @@ index prediction
|
|
924 |
922 0
|
925 |
923 0
|
926 |
924 0
|
927 |
-
925
|
928 |
926 0
|
929 |
927 0
|
930 |
928 0
|
@@ -951,7 +951,7 @@ index prediction
|
|
951 |
949 0
|
952 |
950 0
|
953 |
951 0
|
954 |
-
952
|
955 |
953 1
|
956 |
954 0
|
957 |
955 0
|
@@ -973,18 +973,18 @@ index prediction
|
|
973 |
971 0
|
974 |
972 0
|
975 |
973 0
|
976 |
-
974
|
977 |
975 0
|
978 |
-
976
|
979 |
977 0
|
980 |
978 0
|
981 |
979 0
|
982 |
980 1
|
983 |
-
981
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
-
985
|
988 |
986 1
|
989 |
987 0
|
990 |
988 0
|
|
|
5 |
3 1
|
6 |
4 0
|
7 |
5 1
|
8 |
+
6 0
|
9 |
7 1
|
10 |
8 1
|
11 |
9 1
|
12 |
10 1
|
13 |
11 1
|
14 |
12 1
|
15 |
+
13 1
|
16 |
14 1
|
17 |
15 1
|
18 |
16 0
|
|
|
106 |
104 1
|
107 |
105 1
|
108 |
106 1
|
109 |
+
107 0
|
110 |
108 1
|
111 |
109 1
|
112 |
110 0
|
113 |
111 1
|
114 |
112 0
|
115 |
+
113 1
|
116 |
+
114 1
|
117 |
115 1
|
118 |
116 1
|
119 |
117 1
|
|
|
130 |
128 1
|
131 |
129 1
|
132 |
130 1
|
133 |
+
131 1
|
134 |
132 1
|
135 |
133 1
|
136 |
134 1
|
|
|
139 |
137 1
|
140 |
138 1
|
141 |
139 1
|
142 |
+
140 1
|
143 |
141 1
|
144 |
142 1
|
145 |
+
143 1
|
146 |
144 1
|
147 |
145 1
|
148 |
146 1
|
149 |
147 1
|
150 |
148 1
|
151 |
149 1
|
152 |
+
150 0
|
153 |
151 1
|
154 |
152 1
|
155 |
+
153 1
|
156 |
154 1
|
157 |
155 1
|
158 |
156 1
|
|
|
164 |
162 1
|
165 |
163 1
|
166 |
164 0
|
167 |
+
165 0
|
168 |
166 1
|
169 |
167 1
|
170 |
168 1
|
|
|
176 |
174 1
|
177 |
175 1
|
178 |
176 1
|
179 |
+
177 0
|
180 |
178 1
|
181 |
179 1
|
182 |
180 1
|
|
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
187 |
+
185 1
|
188 |
186 1
|
189 |
187 1
|
190 |
188 1
|
|
|
202 |
200 1
|
203 |
201 1
|
204 |
202 1
|
205 |
+
203 1
|
206 |
204 0
|
207 |
205 1
|
208 |
206 1
|
209 |
+
207 0
|
210 |
208 1
|
211 |
209 1
|
212 |
210 1
|
213 |
211 1
|
214 |
212 1
|
215 |
213 1
|
216 |
+
214 1
|
217 |
215 0
|
218 |
216 1
|
219 |
217 0
|
220 |
218 1
|
221 |
+
219 0
|
222 |
220 1
|
223 |
221 1
|
224 |
222 1
|
|
|
274 |
272 1
|
275 |
273 1
|
276 |
274 1
|
277 |
+
275 1
|
278 |
276 1
|
279 |
277 1
|
280 |
278 1
|
281 |
279 1
|
282 |
+
280 0
|
283 |
+
281 1
|
284 |
282 1
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
286 0
|
289 |
+
287 1
|
290 |
288 1
|
291 |
289 1
|
292 |
290 1
|
|
|
440 |
438 0
|
441 |
439 0
|
442 |
440 0
|
443 |
+
441 0
|
444 |
442 0
|
445 |
443 0
|
446 |
444 0
|
|
|
477 |
475 0
|
478 |
476 0
|
479 |
477 0
|
480 |
+
478 0
|
481 |
479 0
|
482 |
480 0
|
483 |
481 0
|
|
|
485 |
483 0
|
486 |
484 0
|
487 |
485 0
|
488 |
+
486 0
|
489 |
487 0
|
490 |
488 0
|
491 |
489 0
|
|
|
530 |
528 0
|
531 |
529 0
|
532 |
530 0
|
533 |
+
531 1
|
534 |
532 0
|
535 |
533 0
|
536 |
534 0
|
|
|
538 |
536 0
|
539 |
537 0
|
540 |
538 0
|
541 |
+
539 0
|
542 |
540 0
|
543 |
541 0
|
544 |
542 0
|
|
|
551 |
549 0
|
552 |
550 0
|
553 |
551 0
|
554 |
+
552 0
|
555 |
553 0
|
556 |
554 0
|
557 |
555 0
|
|
|
561 |
559 0
|
562 |
560 0
|
563 |
561 0
|
564 |
+
562 1
|
565 |
563 0
|
566 |
564 0
|
567 |
565 0
|
|
|
580 |
578 0
|
581 |
579 0
|
582 |
580 0
|
583 |
+
581 1
|
584 |
582 0
|
585 |
583 0
|
586 |
584 0
|
|
|
610 |
608 0
|
611 |
609 0
|
612 |
610 0
|
613 |
+
611 0
|
614 |
612 0
|
615 |
613 0
|
616 |
614 0
|
|
|
663 |
661 0
|
664 |
662 0
|
665 |
663 1
|
666 |
+
664 1
|
667 |
+
665 0
|
668 |
666 0
|
669 |
667 0
|
670 |
668 0
|
|
|
685 |
683 0
|
686 |
684 0
|
687 |
685 0
|
688 |
+
686 0
|
689 |
687 0
|
690 |
688 0
|
691 |
689 0
|
|
|
859 |
857 0
|
860 |
858 0
|
861 |
859 0
|
862 |
+
860 1
|
863 |
861 0
|
864 |
862 0
|
865 |
863 0
|
|
|
869 |
867 1
|
870 |
868 0
|
871 |
869 0
|
872 |
+
870 1
|
873 |
871 0
|
874 |
872 0
|
875 |
873 0
|
|
|
924 |
922 0
|
925 |
923 0
|
926 |
924 0
|
927 |
+
925 1
|
928 |
926 0
|
929 |
927 0
|
930 |
928 0
|
|
|
951 |
949 0
|
952 |
950 0
|
953 |
951 0
|
954 |
+
952 1
|
955 |
953 1
|
956 |
954 0
|
957 |
955 0
|
|
|
973 |
971 0
|
974 |
972 0
|
975 |
973 0
|
976 |
+
974 0
|
977 |
975 0
|
978 |
+
976 0
|
979 |
977 0
|
980 |
978 0
|
981 |
979 0
|
982 |
980 1
|
983 |
+
981 1
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
+
985 1
|
988 |
986 1
|
989 |
987 0
|
990 |
988 0
|
runs/Jun03_14-17-29_a358b85c7679/events.out.tfevents.1717424904.a358b85c7679.134923.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21e250776b51f52f2d8b87824014b4a4e9233bca4e2fe412fc47b85531bbd611
|
3 |
+
size 560
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.2259816083751741,
|
4 |
+
"train_runtime": 638.5228,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 113.951,
|
7 |
+
"train_steps_per_second": 3.821
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm": 4.
|
14 |
"learning_rate": 4.75e-05,
|
15 |
-
"loss": 0.
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm":
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime":
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm": 3.
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime":
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second":
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm": 3.
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime":
|
83 |
-
"eval_samples_per_second":
|
84 |
-
"eval_steps_per_second":
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm":
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime":
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm":
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
"eval_accuracy": 0.87468671679198,
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime":
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm": 0.
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime":
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second":
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm": 2.
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime":
|
159 |
-
"eval_samples_per_second":
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm":
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime":
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm":
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
"eval_accuracy": 0.8922305764411027,
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime":
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second":
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm":
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
"eval_accuracy": 0.8872180451127819,
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime":
|
216 |
-
"eval_samples_per_second":
|
217 |
-
"eval_steps_per_second":
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm":
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime":
|
235 |
-
"eval_samples_per_second":
|
236 |
-
"eval_steps_per_second":
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm": 0.
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
-
"eval_accuracy": 0.
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime":
|
254 |
-
"eval_samples_per_second":
|
255 |
-
"eval_steps_per_second":
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm":
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime":
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second":
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm": 3.
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
-
"eval_accuracy": 0.
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime":
|
292 |
-
"eval_samples_per_second":
|
293 |
-
"eval_steps_per_second":
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm":
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime":
|
311 |
-
"eval_samples_per_second":
|
312 |
-
"eval_steps_per_second":
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm": 0.
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime":
|
330 |
-
"eval_samples_per_second":
|
331 |
-
"eval_steps_per_second":
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm":
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime":
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second":
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm":
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime":
|
368 |
-
"eval_samples_per_second":
|
369 |
-
"eval_steps_per_second":
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm":
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime":
|
387 |
-
"eval_samples_per_second":
|
388 |
-
"eval_steps_per_second":
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 8444128359504000.0,
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second":
|
398 |
-
"train_steps_per_second":
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 4.803397178649902,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
+
"loss": 0.5411,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.7368421052631579,
|
21 |
+
"eval_f1": 0.6508662716567915,
|
22 |
+
"eval_loss": 0.49393221735954285,
|
23 |
+
"eval_precision": 0.6761904761904762,
|
24 |
+
"eval_recall": 0.6412984178941625,
|
25 |
+
"eval_runtime": 1.7881,
|
26 |
+
"eval_samples_per_second": 223.142,
|
27 |
+
"eval_steps_per_second": 27.963,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 3.498361587524414,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.4231,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.8245614035087719,
|
40 |
+
"eval_f1": 0.7995262704565029,
|
41 |
+
"eval_loss": 0.3851858377456665,
|
42 |
+
"eval_precision": 0.7887596899224806,
|
43 |
+
"eval_recall": 0.8183760683760684,
|
44 |
+
"eval_runtime": 1.7893,
|
45 |
+
"eval_samples_per_second": 222.988,
|
46 |
+
"eval_steps_per_second": 27.943,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 3.0573930740356445,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.3331,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8471177944862155,
|
59 |
+
"eval_f1": 0.8080535642463387,
|
60 |
+
"eval_loss": 0.33130019903182983,
|
61 |
+
"eval_precision": 0.8232818379877204,
|
62 |
+
"eval_recall": 0.796826695762866,
|
63 |
+
"eval_runtime": 1.7976,
|
64 |
+
"eval_samples_per_second": 221.96,
|
65 |
+
"eval_steps_per_second": 27.815,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 3.250720500946045,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.2924,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.8822055137844611,
|
78 |
+
"eval_f1": 0.8560793854229822,
|
79 |
+
"eval_loss": 0.30566585063934326,
|
80 |
+
"eval_precision": 0.8609538327526132,
|
81 |
+
"eval_recall": 0.8516548463356974,
|
82 |
+
"eval_runtime": 1.7957,
|
83 |
+
"eval_samples_per_second": 222.195,
|
84 |
+
"eval_steps_per_second": 27.844,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 2.8374593257904053,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.2705,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.87468671679198,
|
97 |
+
"eval_f1": 0.8422176526415692,
|
98 |
+
"eval_loss": 0.3068975508213043,
|
99 |
+
"eval_precision": 0.8604724566416373,
|
100 |
+
"eval_recall": 0.8288325150027278,
|
101 |
+
"eval_runtime": 1.7956,
|
102 |
+
"eval_samples_per_second": 222.215,
|
103 |
+
"eval_steps_per_second": 27.846,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 4.305149078369141,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.2461,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
"eval_accuracy": 0.87468671679198,
|
116 |
+
"eval_f1": 0.8562182887453875,
|
117 |
+
"eval_loss": 0.31193241477012634,
|
118 |
+
"eval_precision": 0.8435805201992252,
|
119 |
+
"eval_recall": 0.8763411529368976,
|
120 |
+
"eval_runtime": 1.7944,
|
121 |
+
"eval_samples_per_second": 222.356,
|
122 |
+
"eval_steps_per_second": 27.864,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 0.4272942841053009,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.2313,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.8872180451127819,
|
135 |
+
"eval_f1": 0.8662440310793597,
|
136 |
+
"eval_loss": 0.28799474239349365,
|
137 |
+
"eval_precision": 0.8606158357771261,
|
138 |
+
"eval_recall": 0.872704128023277,
|
139 |
+
"eval_runtime": 1.8006,
|
140 |
+
"eval_samples_per_second": 221.595,
|
141 |
+
"eval_steps_per_second": 27.769,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 2.898254871368408,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.2183,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8922305764411027,
|
154 |
+
"eval_f1": 0.8676331036823873,
|
155 |
+
"eval_loss": 0.27734559774398804,
|
156 |
+
"eval_precision": 0.8749292230261088,
|
157 |
+
"eval_recall": 0.8612474995453718,
|
158 |
+
"eval_runtime": 1.7976,
|
159 |
+
"eval_samples_per_second": 221.957,
|
160 |
+
"eval_steps_per_second": 27.814,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 6.726850509643555,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.2093,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.8847117794486216,
|
173 |
+
"eval_f1": 0.8587719298245614,
|
174 |
+
"eval_loss": 0.28041473031044006,
|
175 |
+
"eval_precision": 0.864771021021021,
|
176 |
+
"eval_recall": 0.8534278959810875,
|
177 |
+
"eval_runtime": 1.7999,
|
178 |
+
"eval_samples_per_second": 221.684,
|
179 |
+
"eval_steps_per_second": 27.78,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 2.7861063480377197,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.1986,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
"eval_accuracy": 0.8922305764411027,
|
192 |
+
"eval_f1": 0.8654532336864889,
|
193 |
+
"eval_loss": 0.28901827335357666,
|
194 |
+
"eval_precision": 0.8804269882659713,
|
195 |
+
"eval_recall": 0.8537461356610292,
|
196 |
+
"eval_runtime": 1.7942,
|
197 |
+
"eval_samples_per_second": 222.384,
|
198 |
+
"eval_steps_per_second": 27.868,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 1.18681001663208,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.1881,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
"eval_accuracy": 0.8872180451127819,
|
211 |
+
"eval_f1": 0.8629148629148629,
|
212 |
+
"eval_loss": 0.29107582569122314,
|
213 |
+
"eval_precision": 0.8657894736842104,
|
214 |
+
"eval_recall": 0.860201854882706,
|
215 |
+
"eval_runtime": 1.8131,
|
216 |
+
"eval_samples_per_second": 220.068,
|
217 |
+
"eval_steps_per_second": 27.577,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 3.137617588043213,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.1802,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.8822055137844611,
|
230 |
+
"eval_f1": 0.8568221901555235,
|
231 |
+
"eval_loss": 0.28662246465682983,
|
232 |
+
"eval_precision": 0.8596491228070176,
|
233 |
+
"eval_recall": 0.8541553009638116,
|
234 |
+
"eval_runtime": 1.8223,
|
235 |
+
"eval_samples_per_second": 218.951,
|
236 |
+
"eval_steps_per_second": 27.437,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 0.8551347851753235,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.169,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
+
"eval_accuracy": 0.8847117794486216,
|
249 |
+
"eval_f1": 0.8564658408408408,
|
250 |
+
"eval_loss": 0.2963576018810272,
|
251 |
+
"eval_precision": 0.8697278911564625,
|
252 |
+
"eval_recall": 0.8459265320967448,
|
253 |
+
"eval_runtime": 1.8327,
|
254 |
+
"eval_samples_per_second": 217.71,
|
255 |
+
"eval_steps_per_second": 27.282,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 5.66387414932251,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.1709,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.8872180451127819,
|
268 |
+
"eval_f1": 0.8629148629148629,
|
269 |
+
"eval_loss": 0.29438090324401855,
|
270 |
+
"eval_precision": 0.8657894736842104,
|
271 |
+
"eval_recall": 0.860201854882706,
|
272 |
+
"eval_runtime": 1.8299,
|
273 |
+
"eval_samples_per_second": 218.043,
|
274 |
+
"eval_steps_per_second": 27.324,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 3.363886833190918,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.1492,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
+
"eval_accuracy": 0.8872180451127819,
|
287 |
+
"eval_f1": 0.8636104675452922,
|
288 |
+
"eval_loss": 0.28655046224594116,
|
289 |
+
"eval_precision": 0.8645363713902765,
|
290 |
+
"eval_recall": 0.8627023095108202,
|
291 |
+
"eval_runtime": 1.8286,
|
292 |
+
"eval_samples_per_second": 218.201,
|
293 |
+
"eval_steps_per_second": 27.344,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 0.6481318473815918,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.1493,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.8947368421052632,
|
306 |
+
"eval_f1": 0.8742647058823529,
|
307 |
+
"eval_loss": 0.2950553596019745,
|
308 |
+
"eval_precision": 0.8707860158154468,
|
309 |
+
"eval_recall": 0.8780232769594472,
|
310 |
+
"eval_runtime": 1.8286,
|
311 |
+
"eval_samples_per_second": 218.205,
|
312 |
+
"eval_steps_per_second": 27.344,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 0.7666211724281311,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.1425,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.8947368421052632,
|
325 |
+
"eval_f1": 0.8710526315789473,
|
326 |
+
"eval_loss": 0.304831326007843,
|
327 |
+
"eval_precision": 0.8772522522522522,
|
328 |
+
"eval_recall": 0.8655210038188761,
|
329 |
+
"eval_runtime": 1.7983,
|
330 |
+
"eval_samples_per_second": 221.876,
|
331 |
+
"eval_steps_per_second": 27.804,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 3.819899797439575,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.1375,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.899749373433584,
|
344 |
+
"eval_f1": 0.8790689216221131,
|
345 |
+
"eval_loss": 0.298705130815506,
|
346 |
+
"eval_precision": 0.8790689216221131,
|
347 |
+
"eval_recall": 0.8790689216221131,
|
348 |
+
"eval_runtime": 1.8038,
|
349 |
+
"eval_samples_per_second": 221.2,
|
350 |
+
"eval_steps_per_second": 27.719,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 1.7430284023284912,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.1326,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.899749373433584,
|
363 |
+
"eval_f1": 0.8778322106552358,
|
364 |
+
"eval_loss": 0.30734923481941223,
|
365 |
+
"eval_precision": 0.8818924438393465,
|
366 |
+
"eval_recall": 0.8740680123658847,
|
367 |
+
"eval_runtime": 1.8064,
|
368 |
+
"eval_samples_per_second": 220.886,
|
369 |
+
"eval_steps_per_second": 27.68,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 3.931983709335327,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.1365,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.899749373433584,
|
382 |
+
"eval_f1": 0.8784574144023395,
|
383 |
+
"eval_loss": 0.29978305101394653,
|
384 |
+
"eval_precision": 0.8804194733619106,
|
385 |
+
"eval_recall": 0.8765684669939988,
|
386 |
+
"eval_runtime": 1.8111,
|
387 |
+
"eval_samples_per_second": 220.313,
|
388 |
+
"eval_steps_per_second": 27.608,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 8444128359504000.0,
|
395 |
+
"train_loss": 0.2259816083751741,
|
396 |
+
"train_runtime": 638.5228,
|
397 |
+
"train_samples_per_second": 113.951,
|
398 |
+
"train_steps_per_second": 3.821
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|