End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +195 -195
- runs/May26_23-05-07_indolem-petl-vm/events.out.tfevents.1716766661.indolem-petl-vm.3153905.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +203 -203
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
"epoch": 20.0,
|
4 |
-
"eval_accuracy": 0.
|
5 |
-
"eval_f1": 0.
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0.
|
8 |
-
"eval_recall": 0.
|
9 |
-
"eval_runtime": 5.
|
10 |
"eval_samples": 399,
|
11 |
-
"eval_samples_per_second": 79.
|
12 |
-
"eval_steps_per_second": 9.
|
13 |
-
"f1": 0.
|
14 |
-
"precision": 0.
|
15 |
-
"recall": 0.
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
"train_samples": 3638,
|
19 |
-
"train_samples_per_second": 37.
|
20 |
-
"train_steps_per_second": 1.
|
21 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.8941641938674579,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.8847117794486216,
|
5 |
+
"eval_f1": 0.8587719298245614,
|
6 |
+
"eval_loss": 0.2786270081996918,
|
7 |
+
"eval_precision": 0.864771021021021,
|
8 |
+
"eval_recall": 0.8534278959810875,
|
9 |
+
"eval_runtime": 5.0263,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 79.383,
|
12 |
+
"eval_steps_per_second": 9.948,
|
13 |
+
"f1": 0.872841399982368,
|
14 |
+
"precision": 0.8724798955319228,
|
15 |
+
"recall": 0.8732056628105085,
|
16 |
+
"train_loss": 0.30967485005738304,
|
17 |
+
"train_runtime": 1934.4038,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 37.614,
|
20 |
+
"train_steps_per_second": 1.261
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 5.
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second": 79.
|
11 |
-
"eval_steps_per_second": 9.
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.8847117794486216,
|
4 |
+
"eval_f1": 0.8587719298245614,
|
5 |
+
"eval_loss": 0.2786270081996918,
|
6 |
+
"eval_precision": 0.864771021021021,
|
7 |
+
"eval_recall": 0.8534278959810875,
|
8 |
+
"eval_runtime": 5.0263,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 79.383,
|
11 |
+
"eval_steps_per_second": 9.948
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
-
"f1": 0.
|
4 |
-
"precision": 0.
|
5 |
-
"recall": 0.
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.8941641938674579,
|
3 |
+
"f1": 0.872841399982368,
|
4 |
+
"precision": 0.8724798955319228,
|
5 |
+
"recall": 0.8732056628105085
|
6 |
}
|
predict_results.txt
CHANGED
@@ -2,61 +2,61 @@ index prediction
|
|
2 |
0 1
|
3 |
1 1
|
4 |
2 1
|
5 |
-
3
|
6 |
-
4
|
7 |
-
5
|
8 |
6 0
|
9 |
7 1
|
10 |
-
8
|
11 |
9 1
|
12 |
-
10
|
13 |
11 1
|
14 |
12 1
|
15 |
13 0
|
16 |
-
14
|
17 |
15 1
|
18 |
-
16
|
19 |
17 1
|
20 |
-
18
|
21 |
-
19
|
22 |
20 1
|
23 |
21 1
|
24 |
22 1
|
25 |
23 1
|
26 |
24 1
|
27 |
-
25
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
31 |
29 1
|
32 |
-
30
|
33 |
31 0
|
34 |
32 1
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
-
36
|
39 |
37 1
|
40 |
38 1
|
41 |
-
39
|
42 |
-
40
|
43 |
41 1
|
44 |
42 1
|
45 |
43 1
|
46 |
-
44
|
47 |
45 1
|
48 |
46 0
|
49 |
-
47
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
51 1
|
54 |
-
52
|
55 |
-
53
|
56 |
54 1
|
57 |
55 1
|
58 |
56 1
|
59 |
-
57
|
60 |
58 1
|
61 |
59 1
|
62 |
60 1
|
@@ -64,37 +64,37 @@ index prediction
|
|
64 |
62 1
|
65 |
63 1
|
66 |
64 1
|
67 |
-
65
|
68 |
66 1
|
69 |
67 1
|
70 |
68 1
|
71 |
-
69
|
72 |
70 1
|
73 |
71 1
|
74 |
72 1
|
75 |
-
73
|
76 |
74 1
|
77 |
-
75
|
78 |
-
76
|
79 |
-
77
|
80 |
78 1
|
81 |
-
79
|
82 |
80 1
|
83 |
81 1
|
84 |
82 1
|
85 |
-
83
|
86 |
-
84
|
87 |
85 1
|
88 |
86 1
|
89 |
-
87
|
90 |
-
88
|
91 |
89 1
|
92 |
-
90
|
93 |
-
91
|
94 |
92 1
|
95 |
93 1
|
96 |
94 1
|
97 |
-
95
|
98 |
96 1
|
99 |
97 1
|
100 |
98 1
|
@@ -103,15 +103,15 @@ index prediction
|
|
103 |
101 1
|
104 |
102 1
|
105 |
103 1
|
106 |
-
104
|
107 |
105 0
|
108 |
106 1
|
109 |
-
107
|
110 |
108 1
|
111 |
-
109
|
112 |
-
110
|
113 |
111 1
|
114 |
-
112
|
115 |
113 1
|
116 |
114 1
|
117 |
115 1
|
@@ -122,13 +122,13 @@ index prediction
|
|
122 |
120 1
|
123 |
121 1
|
124 |
122 1
|
125 |
-
123
|
126 |
124 1
|
127 |
-
125
|
128 |
126 1
|
129 |
127 1
|
130 |
-
128
|
131 |
-
129
|
132 |
130 1
|
133 |
131 1
|
134 |
132 1
|
@@ -139,86 +139,86 @@ index prediction
|
|
139 |
137 1
|
140 |
138 1
|
141 |
139 1
|
142 |
-
140
|
143 |
141 1
|
144 |
-
142
|
145 |
143 1
|
146 |
144 1
|
147 |
-
145
|
148 |
146 1
|
149 |
147 1
|
150 |
-
148
|
151 |
149 1
|
152 |
150 1
|
153 |
151 1
|
154 |
-
152
|
155 |
153 1
|
156 |
-
154
|
157 |
155 1
|
158 |
-
156
|
159 |
157 1
|
160 |
-
158
|
161 |
-
159
|
162 |
160 1
|
163 |
-
161
|
164 |
162 1
|
165 |
163 1
|
166 |
-
164
|
167 |
165 1
|
168 |
-
166
|
169 |
-
167
|
170 |
168 1
|
171 |
-
169
|
172 |
170 1
|
173 |
171 1
|
174 |
172 1
|
175 |
-
173
|
176 |
174 1
|
177 |
175 1
|
178 |
-
176
|
179 |
-
177
|
180 |
178 1
|
181 |
179 1
|
182 |
180 0
|
183 |
-
181
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
187 |
185 1
|
188 |
186 1
|
189 |
-
187
|
190 |
188 1
|
191 |
-
189
|
192 |
-
190
|
193 |
191 1
|
194 |
192 1
|
195 |
193 1
|
196 |
194 1
|
197 |
195 1
|
198 |
196 1
|
199 |
-
197
|
200 |
198 1
|
201 |
199 1
|
202 |
-
200
|
203 |
201 1
|
204 |
202 1
|
205 |
-
203
|
206 |
204 1
|
207 |
205 1
|
208 |
-
206
|
209 |
207 1
|
210 |
208 1
|
211 |
209 1
|
212 |
210 1
|
213 |
211 1
|
214 |
-
212
|
215 |
213 1
|
216 |
-
214
|
217 |
215 0
|
218 |
216 1
|
219 |
217 0
|
220 |
-
218
|
221 |
-
219
|
222 |
220 1
|
223 |
221 1
|
224 |
222 1
|
@@ -226,21 +226,21 @@ index prediction
|
|
226 |
224 1
|
227 |
225 1
|
228 |
226 1
|
229 |
-
227
|
230 |
228 1
|
231 |
229 1
|
232 |
-
230
|
233 |
231 1
|
234 |
232 1
|
235 |
-
233
|
236 |
-
234
|
237 |
-
235
|
238 |
-
236
|
239 |
237 1
|
240 |
-
238
|
241 |
-
239
|
242 |
240 1
|
243 |
-
241
|
244 |
242 1
|
245 |
243 1
|
246 |
244 1
|
@@ -251,7 +251,7 @@ index prediction
|
|
251 |
249 1
|
252 |
250 1
|
253 |
251 1
|
254 |
-
252
|
255 |
253 1
|
256 |
254 1
|
257 |
255 1
|
@@ -259,50 +259,50 @@ index prediction
|
|
259 |
257 1
|
260 |
258 1
|
261 |
259 1
|
262 |
-
260
|
263 |
261 1
|
264 |
262 1
|
265 |
263 1
|
266 |
264 1
|
267 |
-
265
|
268 |
-
266
|
269 |
267 1
|
270 |
268 1
|
271 |
269 1
|
272 |
270 1
|
273 |
-
271
|
274 |
272 1
|
275 |
273 1
|
276 |
274 1
|
277 |
-
275
|
278 |
276 1
|
279 |
277 1
|
280 |
278 1
|
281 |
279 1
|
282 |
-
280
|
283 |
-
281
|
284 |
-
282
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
-
286
|
289 |
-
287
|
290 |
288 1
|
291 |
-
289
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
295 |
293 1
|
296 |
294 1
|
297 |
295 1
|
298 |
-
296
|
299 |
-
297
|
300 |
-
298
|
301 |
299 0
|
302 |
300 0
|
303 |
301 0
|
304 |
302 0
|
305 |
-
303
|
306 |
304 0
|
307 |
305 0
|
308 |
306 0
|
@@ -311,8 +311,8 @@ index prediction
|
|
311 |
309 0
|
312 |
310 0
|
313 |
311 0
|
314 |
-
312
|
315 |
-
313
|
316 |
314 0
|
317 |
315 0
|
318 |
316 0
|
@@ -325,27 +325,27 @@ index prediction
|
|
325 |
323 0
|
326 |
324 0
|
327 |
325 0
|
328 |
-
326
|
329 |
327 0
|
330 |
328 0
|
331 |
329 0
|
332 |
330 0
|
333 |
331 0
|
334 |
-
332
|
335 |
333 0
|
336 |
334 0
|
337 |
335 0
|
338 |
336 0
|
339 |
337 0
|
340 |
338 0
|
341 |
-
339
|
342 |
340 0
|
343 |
341 0
|
344 |
342 0
|
345 |
343 0
|
346 |
344 0
|
347 |
-
345
|
348 |
-
346
|
349 |
347 0
|
350 |
348 0
|
351 |
349 0
|
@@ -365,30 +365,30 @@ index prediction
|
|
365 |
363 0
|
366 |
364 0
|
367 |
365 0
|
368 |
-
366
|
369 |
367 0
|
370 |
368 0
|
371 |
369 0
|
372 |
370 0
|
373 |
371 0
|
374 |
-
372
|
375 |
373 0
|
376 |
374 0
|
377 |
375 0
|
378 |
376 0
|
379 |
377 0
|
380 |
378 0
|
381 |
-
379
|
382 |
380 0
|
383 |
381 0
|
384 |
382 0
|
385 |
383 0
|
386 |
-
384
|
387 |
385 0
|
388 |
-
386
|
389 |
387 0
|
390 |
388 0
|
391 |
-
389
|
392 |
390 0
|
393 |
391 0
|
394 |
392 0
|
@@ -400,7 +400,7 @@ index prediction
|
|
400 |
398 0
|
401 |
399 0
|
402 |
400 0
|
403 |
-
401
|
404 |
402 0
|
405 |
403 0
|
406 |
404 0
|
@@ -408,21 +408,21 @@ index prediction
|
|
408 |
406 0
|
409 |
407 0
|
410 |
408 0
|
411 |
-
409
|
412 |
-
410
|
413 |
411 0
|
414 |
412 0
|
415 |
413 0
|
416 |
414 0
|
417 |
415 0
|
418 |
416 0
|
419 |
-
417
|
420 |
418 0
|
421 |
419 0
|
422 |
420 0
|
423 |
421 0
|
424 |
422 0
|
425 |
-
423
|
426 |
424 0
|
427 |
425 0
|
428 |
426 0
|
@@ -434,13 +434,13 @@ index prediction
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 0
|
437 |
-
435
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
441 |
439 0
|
442 |
-
440
|
443 |
-
441
|
444 |
442 0
|
445 |
443 0
|
446 |
444 0
|
@@ -451,9 +451,9 @@ index prediction
|
|
451 |
449 0
|
452 |
450 0
|
453 |
451 0
|
454 |
-
452
|
455 |
453 0
|
456 |
-
454
|
457 |
455 0
|
458 |
456 0
|
459 |
457 0
|
@@ -463,7 +463,7 @@ index prediction
|
|
463 |
461 0
|
464 |
462 0
|
465 |
463 0
|
466 |
-
464
|
467 |
465 0
|
468 |
466 0
|
469 |
467 0
|
@@ -471,25 +471,25 @@ index prediction
|
|
471 |
469 0
|
472 |
470 0
|
473 |
471 0
|
474 |
-
472
|
475 |
473 0
|
476 |
-
474
|
477 |
475 0
|
478 |
-
476
|
479 |
477 0
|
480 |
478 0
|
481 |
479 0
|
482 |
-
480
|
483 |
481 0
|
484 |
482 0
|
485 |
483 0
|
486 |
484 0
|
487 |
485 0
|
488 |
-
486
|
489 |
487 0
|
490 |
488 0
|
491 |
489 0
|
492 |
-
490
|
493 |
491 0
|
494 |
492 0
|
495 |
493 0
|
@@ -497,7 +497,7 @@ index prediction
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
-
498
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
@@ -507,7 +507,7 @@ index prediction
|
|
507 |
505 0
|
508 |
506 0
|
509 |
507 0
|
510 |
-
508
|
511 |
509 0
|
512 |
510 0
|
513 |
511 0
|
@@ -522,7 +522,7 @@ index prediction
|
|
522 |
520 0
|
523 |
521 0
|
524 |
522 0
|
525 |
-
523
|
526 |
524 0
|
527 |
525 0
|
528 |
526 0
|
@@ -532,13 +532,13 @@ index prediction
|
|
532 |
530 0
|
533 |
531 0
|
534 |
532 0
|
535 |
-
533
|
536 |
-
534
|
537 |
535 0
|
538 |
536 0
|
539 |
537 0
|
540 |
538 0
|
541 |
-
539
|
542 |
540 0
|
543 |
541 0
|
544 |
542 0
|
@@ -561,12 +561,12 @@ index prediction
|
|
561 |
559 0
|
562 |
560 0
|
563 |
561 0
|
564 |
-
562
|
565 |
563 0
|
566 |
564 0
|
567 |
-
565
|
568 |
566 0
|
569 |
-
567
|
570 |
568 0
|
571 |
569 0
|
572 |
570 0
|
@@ -596,13 +596,13 @@ index prediction
|
|
596 |
594 0
|
597 |
595 0
|
598 |
596 0
|
599 |
-
597
|
600 |
598 0
|
601 |
599 0
|
602 |
600 0
|
603 |
601 0
|
604 |
602 0
|
605 |
-
603
|
606 |
604 0
|
607 |
605 1
|
608 |
606 0
|
@@ -622,9 +622,9 @@ index prediction
|
|
622 |
620 0
|
623 |
621 0
|
624 |
622 0
|
625 |
-
623
|
626 |
624 0
|
627 |
-
625
|
628 |
626 0
|
629 |
627 0
|
630 |
628 0
|
@@ -642,7 +642,7 @@ index prediction
|
|
642 |
640 0
|
643 |
641 0
|
644 |
642 0
|
645 |
-
643
|
646 |
644 0
|
647 |
645 0
|
648 |
646 0
|
@@ -662,8 +662,8 @@ index prediction
|
|
662 |
660 0
|
663 |
661 0
|
664 |
662 0
|
665 |
-
663
|
666 |
-
664
|
667 |
665 0
|
668 |
666 0
|
669 |
667 0
|
@@ -672,7 +672,7 @@ index prediction
|
|
672 |
670 0
|
673 |
671 0
|
674 |
672 0
|
675 |
-
673
|
676 |
674 0
|
677 |
675 0
|
678 |
676 0
|
@@ -688,11 +688,11 @@ index prediction
|
|
688 |
686 0
|
689 |
687 0
|
690 |
688 0
|
691 |
-
689
|
692 |
690 0
|
693 |
691 0
|
694 |
692 0
|
695 |
-
693
|
696 |
694 0
|
697 |
695 0
|
698 |
696 0
|
@@ -700,12 +700,12 @@ index prediction
|
|
700 |
698 0
|
701 |
699 0
|
702 |
700 0
|
703 |
-
701
|
704 |
702 0
|
705 |
703 0
|
706 |
704 0
|
707 |
705 0
|
708 |
-
706
|
709 |
707 0
|
710 |
708 0
|
711 |
709 0
|
@@ -720,14 +720,14 @@ index prediction
|
|
720 |
718 0
|
721 |
719 0
|
722 |
720 0
|
723 |
-
721
|
724 |
722 0
|
725 |
723 0
|
726 |
724 0
|
727 |
-
725
|
728 |
726 0
|
729 |
727 0
|
730 |
-
728
|
731 |
729 0
|
732 |
730 0
|
733 |
731 0
|
@@ -746,7 +746,7 @@ index prediction
|
|
746 |
744 0
|
747 |
745 0
|
748 |
746 0
|
749 |
-
747
|
750 |
748 0
|
751 |
749 0
|
752 |
750 0
|
@@ -754,7 +754,7 @@ index prediction
|
|
754 |
752 0
|
755 |
753 0
|
756 |
754 0
|
757 |
-
755
|
758 |
756 0
|
759 |
757 0
|
760 |
758 0
|
@@ -779,10 +779,10 @@ index prediction
|
|
779 |
777 0
|
780 |
778 0
|
781 |
779 0
|
782 |
-
780
|
783 |
781 0
|
784 |
782 0
|
785 |
-
783
|
786 |
784 0
|
787 |
785 0
|
788 |
786 0
|
@@ -797,19 +797,19 @@ index prediction
|
|
797 |
795 0
|
798 |
796 0
|
799 |
797 0
|
800 |
-
798
|
801 |
-
799
|
802 |
800 0
|
803 |
801 0
|
804 |
-
802
|
805 |
803 0
|
806 |
804 0
|
807 |
805 0
|
808 |
806 0
|
809 |
807 0
|
810 |
808 0
|
811 |
-
809
|
812 |
-
810
|
813 |
811 0
|
814 |
812 0
|
815 |
813 0
|
@@ -825,23 +825,23 @@ index prediction
|
|
825 |
823 0
|
826 |
824 0
|
827 |
825 0
|
828 |
-
826
|
829 |
827 0
|
830 |
828 0
|
831 |
829 0
|
832 |
830 0
|
833 |
-
831
|
834 |
-
832
|
835 |
833 0
|
836 |
834 0
|
837 |
835 0
|
838 |
836 0
|
839 |
837 0
|
840 |
-
838
|
841 |
839 0
|
842 |
840 0
|
843 |
841 0
|
844 |
-
842
|
845 |
843 0
|
846 |
844 0
|
847 |
845 0
|
@@ -859,19 +859,19 @@ index prediction
|
|
859 |
857 0
|
860 |
858 0
|
861 |
859 0
|
862 |
-
860
|
863 |
861 0
|
864 |
862 0
|
865 |
863 0
|
866 |
864 0
|
867 |
865 0
|
868 |
866 0
|
869 |
-
867
|
870 |
868 0
|
871 |
869 0
|
872 |
870 0
|
873 |
871 0
|
874 |
-
872
|
875 |
873 0
|
876 |
874 0
|
877 |
875 0
|
@@ -889,16 +889,16 @@ index prediction
|
|
889 |
887 0
|
890 |
888 0
|
891 |
889 0
|
892 |
-
890
|
893 |
891 0
|
894 |
892 0
|
895 |
-
893
|
896 |
894 0
|
897 |
895 0
|
898 |
896 0
|
899 |
897 0
|
900 |
898 0
|
901 |
-
899
|
902 |
900 0
|
903 |
901 0
|
904 |
902 0
|
@@ -909,9 +909,9 @@ index prediction
|
|
909 |
907 0
|
910 |
908 0
|
911 |
909 0
|
912 |
-
910
|
913 |
911 0
|
914 |
-
912
|
915 |
913 0
|
916 |
914 0
|
917 |
915 0
|
@@ -920,39 +920,39 @@ index prediction
|
|
920 |
918 0
|
921 |
919 0
|
922 |
920 0
|
923 |
-
921
|
924 |
922 0
|
925 |
923 0
|
926 |
-
924
|
927 |
-
925
|
928 |
-
926
|
929 |
-
927
|
930 |
928 0
|
931 |
-
929
|
932 |
930 0
|
933 |
931 0
|
934 |
932 0
|
935 |
-
933
|
936 |
934 0
|
937 |
935 0
|
938 |
936 0
|
939 |
-
937
|
940 |
938 0
|
941 |
939 0
|
942 |
940 0
|
943 |
-
941
|
944 |
942 0
|
945 |
943 0
|
946 |
944 0
|
947 |
-
945
|
948 |
946 0
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
950 0
|
953 |
951 0
|
954 |
-
952
|
955 |
-
953
|
956 |
954 0
|
957 |
955 0
|
958 |
956 0
|
@@ -960,31 +960,31 @@ index prediction
|
|
960 |
958 0
|
961 |
959 0
|
962 |
960 0
|
963 |
-
961
|
964 |
-
962
|
965 |
963 0
|
966 |
964 0
|
967 |
965 0
|
968 |
-
966
|
969 |
967 0
|
970 |
968 0
|
971 |
-
969
|
972 |
970 0
|
973 |
971 0
|
974 |
972 0
|
975 |
973 0
|
976 |
-
974
|
977 |
975 0
|
978 |
-
976
|
979 |
-
977
|
980 |
978 0
|
981 |
979 0
|
982 |
-
980
|
983 |
981 0
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
-
985
|
988 |
986 0
|
989 |
987 0
|
990 |
988 0
|
@@ -998,7 +998,7 @@ index prediction
|
|
998 |
996 0
|
999 |
997 0
|
1000 |
998 0
|
1001 |
-
999
|
1002 |
1000 0
|
1003 |
1001 0
|
1004 |
1002 0
|
@@ -1008,5 +1008,5 @@ index prediction
|
|
1008 |
1006 0
|
1009 |
1007 0
|
1010 |
1008 0
|
1011 |
-
1009
|
1012 |
1010 0
|
|
|
2 |
0 1
|
3 |
1 1
|
4 |
2 1
|
5 |
+
3 0
|
6 |
+
4 1
|
7 |
+
5 1
|
8 |
6 0
|
9 |
7 1
|
10 |
+
8 0
|
11 |
9 1
|
12 |
+
10 1
|
13 |
11 1
|
14 |
12 1
|
15 |
13 0
|
16 |
+
14 0
|
17 |
15 1
|
18 |
+
16 1
|
19 |
17 1
|
20 |
+
18 1
|
21 |
+
19 1
|
22 |
20 1
|
23 |
21 1
|
24 |
22 1
|
25 |
23 1
|
26 |
24 1
|
27 |
+
25 0
|
28 |
26 1
|
29 |
27 1
|
30 |
28 1
|
31 |
29 1
|
32 |
+
30 1
|
33 |
31 0
|
34 |
32 1
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
+
36 1
|
39 |
37 1
|
40 |
38 1
|
41 |
+
39 1
|
42 |
+
40 1
|
43 |
41 1
|
44 |
42 1
|
45 |
43 1
|
46 |
+
44 1
|
47 |
45 1
|
48 |
46 0
|
49 |
+
47 0
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
51 1
|
54 |
+
52 0
|
55 |
+
53 0
|
56 |
54 1
|
57 |
55 1
|
58 |
56 1
|
59 |
+
57 1
|
60 |
58 1
|
61 |
59 1
|
62 |
60 1
|
|
|
64 |
62 1
|
65 |
63 1
|
66 |
64 1
|
67 |
+
65 0
|
68 |
66 1
|
69 |
67 1
|
70 |
68 1
|
71 |
+
69 1
|
72 |
70 1
|
73 |
71 1
|
74 |
72 1
|
75 |
+
73 1
|
76 |
74 1
|
77 |
+
75 0
|
78 |
+
76 0
|
79 |
+
77 1
|
80 |
78 1
|
81 |
+
79 0
|
82 |
80 1
|
83 |
81 1
|
84 |
82 1
|
85 |
+
83 0
|
86 |
+
84 1
|
87 |
85 1
|
88 |
86 1
|
89 |
+
87 1
|
90 |
+
88 0
|
91 |
89 1
|
92 |
+
90 0
|
93 |
+
91 1
|
94 |
92 1
|
95 |
93 1
|
96 |
94 1
|
97 |
+
95 0
|
98 |
96 1
|
99 |
97 1
|
100 |
98 1
|
|
|
103 |
101 1
|
104 |
102 1
|
105 |
103 1
|
106 |
+
104 1
|
107 |
105 0
|
108 |
106 1
|
109 |
+
107 1
|
110 |
108 1
|
111 |
+
109 0
|
112 |
+
110 1
|
113 |
111 1
|
114 |
+
112 1
|
115 |
113 1
|
116 |
114 1
|
117 |
115 1
|
|
|
122 |
120 1
|
123 |
121 1
|
124 |
122 1
|
125 |
+
123 1
|
126 |
124 1
|
127 |
+
125 1
|
128 |
126 1
|
129 |
127 1
|
130 |
+
128 1
|
131 |
+
129 0
|
132 |
130 1
|
133 |
131 1
|
134 |
132 1
|
|
|
139 |
137 1
|
140 |
138 1
|
141 |
139 1
|
142 |
+
140 0
|
143 |
141 1
|
144 |
+
142 1
|
145 |
143 1
|
146 |
144 1
|
147 |
+
145 0
|
148 |
146 1
|
149 |
147 1
|
150 |
+
148 0
|
151 |
149 1
|
152 |
150 1
|
153 |
151 1
|
154 |
+
152 1
|
155 |
153 1
|
156 |
+
154 0
|
157 |
155 1
|
158 |
+
156 0
|
159 |
157 1
|
160 |
+
158 0
|
161 |
+
159 0
|
162 |
160 1
|
163 |
+
161 0
|
164 |
162 1
|
165 |
163 1
|
166 |
+
164 1
|
167 |
165 1
|
168 |
+
166 0
|
169 |
+
167 0
|
170 |
168 1
|
171 |
+
169 0
|
172 |
170 1
|
173 |
171 1
|
174 |
172 1
|
175 |
+
173 1
|
176 |
174 1
|
177 |
175 1
|
178 |
+
176 1
|
179 |
+
177 1
|
180 |
178 1
|
181 |
179 1
|
182 |
180 0
|
183 |
+
181 1
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
187 |
185 1
|
188 |
186 1
|
189 |
+
187 0
|
190 |
188 1
|
191 |
+
189 0
|
192 |
+
190 0
|
193 |
191 1
|
194 |
192 1
|
195 |
193 1
|
196 |
194 1
|
197 |
195 1
|
198 |
196 1
|
199 |
+
197 1
|
200 |
198 1
|
201 |
199 1
|
202 |
+
200 1
|
203 |
201 1
|
204 |
202 1
|
205 |
+
203 1
|
206 |
204 1
|
207 |
205 1
|
208 |
+
206 0
|
209 |
207 1
|
210 |
208 1
|
211 |
209 1
|
212 |
210 1
|
213 |
211 1
|
214 |
+
212 0
|
215 |
213 1
|
216 |
+
214 0
|
217 |
215 0
|
218 |
216 1
|
219 |
217 0
|
220 |
+
218 1
|
221 |
+
219 1
|
222 |
220 1
|
223 |
221 1
|
224 |
222 1
|
|
|
226 |
224 1
|
227 |
225 1
|
228 |
226 1
|
229 |
+
227 0
|
230 |
228 1
|
231 |
229 1
|
232 |
+
230 0
|
233 |
231 1
|
234 |
232 1
|
235 |
+
233 0
|
236 |
+
234 1
|
237 |
+
235 1
|
238 |
+
236 1
|
239 |
237 1
|
240 |
+
238 1
|
241 |
+
239 1
|
242 |
240 1
|
243 |
+
241 0
|
244 |
242 1
|
245 |
243 1
|
246 |
244 1
|
|
|
251 |
249 1
|
252 |
250 1
|
253 |
251 1
|
254 |
+
252 0
|
255 |
253 1
|
256 |
254 1
|
257 |
255 1
|
|
|
259 |
257 1
|
260 |
258 1
|
261 |
259 1
|
262 |
+
260 1
|
263 |
261 1
|
264 |
262 1
|
265 |
263 1
|
266 |
264 1
|
267 |
+
265 1
|
268 |
+
266 1
|
269 |
267 1
|
270 |
268 1
|
271 |
269 1
|
272 |
270 1
|
273 |
+
271 0
|
274 |
272 1
|
275 |
273 1
|
276 |
274 1
|
277 |
+
275 1
|
278 |
276 1
|
279 |
277 1
|
280 |
278 1
|
281 |
279 1
|
282 |
+
280 1
|
283 |
+
281 0
|
284 |
+
282 0
|
285 |
283 1
|
286 |
284 1
|
287 |
285 1
|
288 |
+
286 1
|
289 |
+
287 0
|
290 |
288 1
|
291 |
+
289 0
|
292 |
290 1
|
293 |
291 1
|
294 |
292 1
|
295 |
293 1
|
296 |
294 1
|
297 |
295 1
|
298 |
+
296 1
|
299 |
+
297 0
|
300 |
+
298 0
|
301 |
299 0
|
302 |
300 0
|
303 |
301 0
|
304 |
302 0
|
305 |
+
303 1
|
306 |
304 0
|
307 |
305 0
|
308 |
306 0
|
|
|
311 |
309 0
|
312 |
310 0
|
313 |
311 0
|
314 |
+
312 1
|
315 |
+
313 1
|
316 |
314 0
|
317 |
315 0
|
318 |
316 0
|
|
|
325 |
323 0
|
326 |
324 0
|
327 |
325 0
|
328 |
+
326 1
|
329 |
327 0
|
330 |
328 0
|
331 |
329 0
|
332 |
330 0
|
333 |
331 0
|
334 |
+
332 1
|
335 |
333 0
|
336 |
334 0
|
337 |
335 0
|
338 |
336 0
|
339 |
337 0
|
340 |
338 0
|
341 |
+
339 1
|
342 |
340 0
|
343 |
341 0
|
344 |
342 0
|
345 |
343 0
|
346 |
344 0
|
347 |
+
345 0
|
348 |
+
346 1
|
349 |
347 0
|
350 |
348 0
|
351 |
349 0
|
|
|
365 |
363 0
|
366 |
364 0
|
367 |
365 0
|
368 |
+
366 0
|
369 |
367 0
|
370 |
368 0
|
371 |
369 0
|
372 |
370 0
|
373 |
371 0
|
374 |
+
372 1
|
375 |
373 0
|
376 |
374 0
|
377 |
375 0
|
378 |
376 0
|
379 |
377 0
|
380 |
378 0
|
381 |
+
379 0
|
382 |
380 0
|
383 |
381 0
|
384 |
382 0
|
385 |
383 0
|
386 |
+
384 1
|
387 |
385 0
|
388 |
+
386 1
|
389 |
387 0
|
390 |
388 0
|
391 |
+
389 0
|
392 |
390 0
|
393 |
391 0
|
394 |
392 0
|
|
|
400 |
398 0
|
401 |
399 0
|
402 |
400 0
|
403 |
+
401 0
|
404 |
402 0
|
405 |
403 0
|
406 |
404 0
|
|
|
408 |
406 0
|
409 |
407 0
|
410 |
408 0
|
411 |
+
409 0
|
412 |
+
410 0
|
413 |
411 0
|
414 |
412 0
|
415 |
413 0
|
416 |
414 0
|
417 |
415 0
|
418 |
416 0
|
419 |
+
417 0
|
420 |
418 0
|
421 |
419 0
|
422 |
420 0
|
423 |
421 0
|
424 |
422 0
|
425 |
+
423 0
|
426 |
424 0
|
427 |
425 0
|
428 |
426 0
|
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 0
|
437 |
+
435 1
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
441 |
439 0
|
442 |
+
440 1
|
443 |
+
441 0
|
444 |
442 0
|
445 |
443 0
|
446 |
444 0
|
|
|
451 |
449 0
|
452 |
450 0
|
453 |
451 0
|
454 |
+
452 0
|
455 |
453 0
|
456 |
+
454 0
|
457 |
455 0
|
458 |
456 0
|
459 |
457 0
|
|
|
463 |
461 0
|
464 |
462 0
|
465 |
463 0
|
466 |
+
464 1
|
467 |
465 0
|
468 |
466 0
|
469 |
467 0
|
|
|
471 |
469 0
|
472 |
470 0
|
473 |
471 0
|
474 |
+
472 1
|
475 |
473 0
|
476 |
+
474 1
|
477 |
475 0
|
478 |
+
476 1
|
479 |
477 0
|
480 |
478 0
|
481 |
479 0
|
482 |
+
480 1
|
483 |
481 0
|
484 |
482 0
|
485 |
483 0
|
486 |
484 0
|
487 |
485 0
|
488 |
+
486 1
|
489 |
487 0
|
490 |
488 0
|
491 |
489 0
|
492 |
+
490 1
|
493 |
491 0
|
494 |
492 0
|
495 |
493 0
|
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
+
498 0
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
|
|
507 |
505 0
|
508 |
506 0
|
509 |
507 0
|
510 |
+
508 0
|
511 |
509 0
|
512 |
510 0
|
513 |
511 0
|
|
|
522 |
520 0
|
523 |
521 0
|
524 |
522 0
|
525 |
+
523 1
|
526 |
524 0
|
527 |
525 0
|
528 |
526 0
|
|
|
532 |
530 0
|
533 |
531 0
|
534 |
532 0
|
535 |
+
533 0
|
536 |
+
534 1
|
537 |
535 0
|
538 |
536 0
|
539 |
537 0
|
540 |
538 0
|
541 |
+
539 1
|
542 |
540 0
|
543 |
541 0
|
544 |
542 0
|
|
|
561 |
559 0
|
562 |
560 0
|
563 |
561 0
|
564 |
+
562 0
|
565 |
563 0
|
566 |
564 0
|
567 |
+
565 1
|
568 |
566 0
|
569 |
+
567 1
|
570 |
568 0
|
571 |
569 0
|
572 |
570 0
|
|
|
596 |
594 0
|
597 |
595 0
|
598 |
596 0
|
599 |
+
597 1
|
600 |
598 0
|
601 |
599 0
|
602 |
600 0
|
603 |
601 0
|
604 |
602 0
|
605 |
+
603 0
|
606 |
604 0
|
607 |
605 1
|
608 |
606 0
|
|
|
622 |
620 0
|
623 |
621 0
|
624 |
622 0
|
625 |
+
623 0
|
626 |
624 0
|
627 |
+
625 0
|
628 |
626 0
|
629 |
627 0
|
630 |
628 0
|
|
|
642 |
640 0
|
643 |
641 0
|
644 |
642 0
|
645 |
+
643 0
|
646 |
644 0
|
647 |
645 0
|
648 |
646 0
|
|
|
662 |
660 0
|
663 |
661 0
|
664 |
662 0
|
665 |
+
663 0
|
666 |
+
664 0
|
667 |
665 0
|
668 |
666 0
|
669 |
667 0
|
|
|
672 |
670 0
|
673 |
671 0
|
674 |
672 0
|
675 |
+
673 1
|
676 |
674 0
|
677 |
675 0
|
678 |
676 0
|
|
|
688 |
686 0
|
689 |
687 0
|
690 |
688 0
|
691 |
+
689 1
|
692 |
690 0
|
693 |
691 0
|
694 |
692 0
|
695 |
+
693 1
|
696 |
694 0
|
697 |
695 0
|
698 |
696 0
|
|
|
700 |
698 0
|
701 |
699 0
|
702 |
700 0
|
703 |
+
701 1
|
704 |
702 0
|
705 |
703 0
|
706 |
704 0
|
707 |
705 0
|
708 |
+
706 0
|
709 |
707 0
|
710 |
708 0
|
711 |
709 0
|
|
|
720 |
718 0
|
721 |
719 0
|
722 |
720 0
|
723 |
+
721 0
|
724 |
722 0
|
725 |
723 0
|
726 |
724 0
|
727 |
+
725 0
|
728 |
726 0
|
729 |
727 0
|
730 |
+
728 1
|
731 |
729 0
|
732 |
730 0
|
733 |
731 0
|
|
|
746 |
744 0
|
747 |
745 0
|
748 |
746 0
|
749 |
+
747 1
|
750 |
748 0
|
751 |
749 0
|
752 |
750 0
|
|
|
754 |
752 0
|
755 |
753 0
|
756 |
754 0
|
757 |
+
755 0
|
758 |
756 0
|
759 |
757 0
|
760 |
758 0
|
|
|
779 |
777 0
|
780 |
778 0
|
781 |
779 0
|
782 |
+
780 0
|
783 |
781 0
|
784 |
782 0
|
785 |
+
783 0
|
786 |
784 0
|
787 |
785 0
|
788 |
786 0
|
|
|
797 |
795 0
|
798 |
796 0
|
799 |
797 0
|
800 |
+
798 1
|
801 |
+
799 1
|
802 |
800 0
|
803 |
801 0
|
804 |
+
802 1
|
805 |
803 0
|
806 |
804 0
|
807 |
805 0
|
808 |
806 0
|
809 |
807 0
|
810 |
808 0
|
811 |
+
809 1
|
812 |
+
810 1
|
813 |
811 0
|
814 |
812 0
|
815 |
813 0
|
|
|
825 |
823 0
|
826 |
824 0
|
827 |
825 0
|
828 |
+
826 1
|
829 |
827 0
|
830 |
828 0
|
831 |
829 0
|
832 |
830 0
|
833 |
+
831 1
|
834 |
+
832 1
|
835 |
833 0
|
836 |
834 0
|
837 |
835 0
|
838 |
836 0
|
839 |
837 0
|
840 |
+
838 1
|
841 |
839 0
|
842 |
840 0
|
843 |
841 0
|
844 |
+
842 0
|
845 |
843 0
|
846 |
844 0
|
847 |
845 0
|
|
|
859 |
857 0
|
860 |
858 0
|
861 |
859 0
|
862 |
+
860 0
|
863 |
861 0
|
864 |
862 0
|
865 |
863 0
|
866 |
864 0
|
867 |
865 0
|
868 |
866 0
|
869 |
+
867 0
|
870 |
868 0
|
871 |
869 0
|
872 |
870 0
|
873 |
871 0
|
874 |
+
872 0
|
875 |
873 0
|
876 |
874 0
|
877 |
875 0
|
|
|
889 |
887 0
|
890 |
888 0
|
891 |
889 0
|
892 |
+
890 0
|
893 |
891 0
|
894 |
892 0
|
895 |
+
893 0
|
896 |
894 0
|
897 |
895 0
|
898 |
896 0
|
899 |
897 0
|
900 |
898 0
|
901 |
+
899 0
|
902 |
900 0
|
903 |
901 0
|
904 |
902 0
|
|
|
909 |
907 0
|
910 |
908 0
|
911 |
909 0
|
912 |
+
910 0
|
913 |
911 0
|
914 |
+
912 1
|
915 |
913 0
|
916 |
914 0
|
917 |
915 0
|
|
|
920 |
918 0
|
921 |
919 0
|
922 |
920 0
|
923 |
+
921 1
|
924 |
922 0
|
925 |
923 0
|
926 |
+
924 1
|
927 |
+
925 0
|
928 |
+
926 1
|
929 |
+
927 1
|
930 |
928 0
|
931 |
+
929 1
|
932 |
930 0
|
933 |
931 0
|
934 |
932 0
|
935 |
+
933 0
|
936 |
934 0
|
937 |
935 0
|
938 |
936 0
|
939 |
+
937 0
|
940 |
938 0
|
941 |
939 0
|
942 |
940 0
|
943 |
+
941 1
|
944 |
942 0
|
945 |
943 0
|
946 |
944 0
|
947 |
+
945 1
|
948 |
946 0
|
949 |
947 0
|
950 |
948 0
|
951 |
949 0
|
952 |
950 0
|
953 |
951 0
|
954 |
+
952 0
|
955 |
+
953 0
|
956 |
954 0
|
957 |
955 0
|
958 |
956 0
|
|
|
960 |
958 0
|
961 |
959 0
|
962 |
960 0
|
963 |
+
961 1
|
964 |
+
962 0
|
965 |
963 0
|
966 |
964 0
|
967 |
965 0
|
968 |
+
966 0
|
969 |
967 0
|
970 |
968 0
|
971 |
+
969 0
|
972 |
970 0
|
973 |
971 0
|
974 |
972 0
|
975 |
973 0
|
976 |
+
974 1
|
977 |
975 0
|
978 |
+
976 0
|
979 |
+
977 1
|
980 |
978 0
|
981 |
979 0
|
982 |
+
980 0
|
983 |
981 0
|
984 |
982 0
|
985 |
983 0
|
986 |
984 0
|
987 |
+
985 0
|
988 |
986 0
|
989 |
987 0
|
990 |
988 0
|
|
|
998 |
996 0
|
999 |
997 0
|
1000 |
998 0
|
1001 |
+
999 1
|
1002 |
1000 0
|
1003 |
1001 0
|
1004 |
1002 0
|
|
|
1008 |
1006 0
|
1009 |
1007 0
|
1010 |
1008 0
|
1011 |
+
1009 1
|
1012 |
1010 0
|
runs/May26_23-05-07_indolem-petl-vm/events.out.tfevents.1716766661.indolem-petl-vm.3153905.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16e78608395111700e37d5488b56b49e9846a08f2ecf80d0b4962ce418dd3c97
|
3 |
+
size 560
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second": 37.
|
7 |
-
"train_steps_per_second": 1.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.30967485005738304,
|
4 |
+
"train_runtime": 1934.4038,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 37.614,
|
7 |
+
"train_steps_per_second": 1.261
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 4.75e-05,
|
15 |
-
"loss": 0.
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
"eval_accuracy": 0.7268170426065163,
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime": 5.
|
26 |
-
"eval_samples_per_second": 78.
|
27 |
-
"eval_steps_per_second": 9.
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm":
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime": 5.
|
45 |
-
"eval_samples_per_second": 78.
|
46 |
-
"eval_steps_per_second": 9.
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm":
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime": 5.
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second": 9.
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm":
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime": 5.
|
83 |
-
"eval_samples_per_second": 78.
|
84 |
-
"eval_steps_per_second": 9.
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm":
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime": 5.
|
102 |
-
"eval_samples_per_second": 78.
|
103 |
-
"eval_steps_per_second": 9.
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm":
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime": 5.
|
121 |
-
"eval_samples_per_second": 78.
|
122 |
-
"eval_steps_per_second": 9.
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm":
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime": 5.
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second": 9.
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm":
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime": 5.
|
159 |
-
"eval_samples_per_second": 78.
|
160 |
-
"eval_steps_per_second": 9.
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm":
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime": 5.
|
178 |
-
"eval_samples_per_second": 78.
|
179 |
-
"eval_steps_per_second": 9.
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm": 5.
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime": 5.
|
197 |
-
"eval_samples_per_second": 78.
|
198 |
-
"eval_steps_per_second": 9.
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm":
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
-
"eval_accuracy": 0.
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime": 5.
|
216 |
-
"eval_samples_per_second": 78.
|
217 |
-
"eval_steps_per_second": 9.
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm": 10.
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime": 5.
|
235 |
-
"eval_samples_per_second": 78.
|
236 |
-
"eval_steps_per_second": 9.
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm":
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
-
"eval_accuracy": 0.
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime": 5.
|
254 |
-
"eval_samples_per_second": 78.
|
255 |
-
"eval_steps_per_second": 9.
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm":
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime": 5.
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second": 9.
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm": 1.
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
-
"eval_accuracy": 0.
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime": 5.
|
292 |
-
"eval_samples_per_second": 78.
|
293 |
-
"eval_steps_per_second": 9.
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm":
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime": 5.
|
311 |
-
"eval_samples_per_second": 78.
|
312 |
-
"eval_steps_per_second": 9.
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm": 1.
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime": 5.
|
330 |
-
"eval_samples_per_second": 78.
|
331 |
-
"eval_steps_per_second": 9.
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm":
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime": 5.
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second": 9.
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm":
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime": 5.
|
368 |
-
"eval_samples_per_second": 78.
|
369 |
-
"eval_steps_per_second": 9.
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm":
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime": 5.
|
387 |
-
"eval_samples_per_second": 78.
|
388 |
-
"eval_steps_per_second": 9.
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7609911792720000.0,
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second": 37.
|
398 |
-
"train_steps_per_second": 1.
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 5.93964147567749,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
+
"loss": 0.5623,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
"eval_accuracy": 0.7268170426065163,
|
21 |
+
"eval_f1": 0.6301313943104988,
|
22 |
+
"eval_loss": 0.5216777324676514,
|
23 |
+
"eval_precision": 0.6603762281332375,
|
24 |
+
"eval_recall": 0.6217039461720313,
|
25 |
+
"eval_runtime": 5.0877,
|
26 |
+
"eval_samples_per_second": 78.424,
|
27 |
+
"eval_steps_per_second": 9.828,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 3.8485560417175293,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.5061,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.7568922305764411,
|
40 |
+
"eval_f1": 0.7089058868656783,
|
41 |
+
"eval_loss": 0.48978015780448914,
|
42 |
+
"eval_precision": 0.7074372759856631,
|
43 |
+
"eval_recall": 0.7104928168757956,
|
44 |
+
"eval_runtime": 5.0629,
|
45 |
+
"eval_samples_per_second": 78.809,
|
46 |
+
"eval_steps_per_second": 9.876,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 5.005080699920654,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.4443,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8120300751879699,
|
59 |
+
"eval_f1": 0.7678883071553229,
|
60 |
+
"eval_loss": 0.40850991010665894,
|
61 |
+
"eval_precision": 0.7750572737686139,
|
62 |
+
"eval_recall": 0.7620021822149482,
|
63 |
+
"eval_runtime": 5.144,
|
64 |
+
"eval_samples_per_second": 77.566,
|
65 |
+
"eval_steps_per_second": 9.72,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 2.8029582500457764,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.3805,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.8245614035087719,
|
78 |
+
"eval_f1": 0.7751786979200206,
|
79 |
+
"eval_loss": 0.3672122061252594,
|
80 |
+
"eval_precision": 0.7980263157894737,
|
81 |
+
"eval_recall": 0.7608656119294417,
|
82 |
+
"eval_runtime": 5.0838,
|
83 |
+
"eval_samples_per_second": 78.485,
|
84 |
+
"eval_steps_per_second": 9.835,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 3.751908540725708,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.3488,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.8521303258145363,
|
97 |
+
"eval_f1": 0.8229427559286084,
|
98 |
+
"eval_loss": 0.35348454117774963,
|
99 |
+
"eval_precision": 0.8206541218637993,
|
100 |
+
"eval_recall": 0.8253773413347881,
|
101 |
+
"eval_runtime": 5.0536,
|
102 |
+
"eval_samples_per_second": 78.953,
|
103 |
+
"eval_steps_per_second": 9.894,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 4.316796779632568,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.3156,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.8571428571428571,
|
116 |
+
"eval_f1": 0.8254579780661698,
|
117 |
+
"eval_loss": 0.33368828892707825,
|
118 |
+
"eval_precision": 0.8299216027874565,
|
119 |
+
"eval_recall": 0.8214220767412257,
|
120 |
+
"eval_runtime": 5.0533,
|
121 |
+
"eval_samples_per_second": 78.959,
|
122 |
+
"eval_steps_per_second": 9.895,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 18.979951858520508,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.3055,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.8621553884711779,
|
135 |
+
"eval_f1": 0.8297847585805701,
|
136 |
+
"eval_loss": 0.3217175304889679,
|
137 |
+
"eval_precision": 0.8385357006491028,
|
138 |
+
"eval_recall": 0.8224677214038916,
|
139 |
+
"eval_runtime": 5.0744,
|
140 |
+
"eval_samples_per_second": 78.63,
|
141 |
+
"eval_steps_per_second": 9.853,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 5.143575191497803,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.2995,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8596491228070176,
|
154 |
+
"eval_f1": 0.8271551457392166,
|
155 |
+
"eval_loss": 0.31452828645706177,
|
156 |
+
"eval_precision": 0.8347358430876305,
|
157 |
+
"eval_recall": 0.8206946717585015,
|
158 |
+
"eval_runtime": 5.0883,
|
159 |
+
"eval_samples_per_second": 78.414,
|
160 |
+
"eval_steps_per_second": 9.826,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 6.147844314575195,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.2825,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.8671679197994987,
|
173 |
+
"eval_f1": 0.8393634395533442,
|
174 |
+
"eval_loss": 0.3090471923351288,
|
175 |
+
"eval_precision": 0.8402278542707444,
|
176 |
+
"eval_recall": 0.8385160938352427,
|
177 |
+
"eval_runtime": 5.0782,
|
178 |
+
"eval_samples_per_second": 78.572,
|
179 |
+
"eval_steps_per_second": 9.846,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 5.50480842590332,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.272,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.8721804511278195,
|
192 |
+
"eval_f1": 0.8461962888779714,
|
193 |
+
"eval_loss": 0.29923897981643677,
|
194 |
+
"eval_precision": 0.8453465227094517,
|
195 |
+
"eval_recall": 0.8470631023822512,
|
196 |
+
"eval_runtime": 5.0745,
|
197 |
+
"eval_samples_per_second": 78.629,
|
198 |
+
"eval_steps_per_second": 9.853,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 6.085771083831787,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.2626,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
+
"eval_accuracy": 0.87468671679198,
|
211 |
+
"eval_f1": 0.8439846096096095,
|
212 |
+
"eval_loss": 0.30075788497924805,
|
213 |
+
"eval_precision": 0.8568027210884354,
|
214 |
+
"eval_recall": 0.8338334242589562,
|
215 |
+
"eval_runtime": 5.0607,
|
216 |
+
"eval_samples_per_second": 78.843,
|
217 |
+
"eval_steps_per_second": 9.88,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 10.957924842834473,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.2641,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.87468671679198,
|
230 |
+
"eval_f1": 0.8488361520276414,
|
231 |
+
"eval_loss": 0.2949255406856537,
|
232 |
+
"eval_precision": 0.8488361520276414,
|
233 |
+
"eval_recall": 0.8488361520276414,
|
234 |
+
"eval_runtime": 5.0742,
|
235 |
+
"eval_samples_per_second": 78.634,
|
236 |
+
"eval_steps_per_second": 9.854,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 3.114020347595215,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.257,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
+
"eval_accuracy": 0.8771929824561403,
|
249 |
+
"eval_f1": 0.8475258334958082,
|
250 |
+
"eval_loss": 0.28850188851356506,
|
251 |
+
"eval_precision": 0.8591828192414193,
|
252 |
+
"eval_recall": 0.8381069285324605,
|
253 |
+
"eval_runtime": 5.0549,
|
254 |
+
"eval_samples_per_second": 78.934,
|
255 |
+
"eval_steps_per_second": 9.891,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 4.347434043884277,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.2473,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.8822055137844611,
|
268 |
+
"eval_f1": 0.8568221901555235,
|
269 |
+
"eval_loss": 0.2826312482357025,
|
270 |
+
"eval_precision": 0.8596491228070176,
|
271 |
+
"eval_recall": 0.8541553009638116,
|
272 |
+
"eval_runtime": 5.0506,
|
273 |
+
"eval_samples_per_second": 79.001,
|
274 |
+
"eval_steps_per_second": 9.9,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 1.6674721240997314,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.2456,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
+
"eval_accuracy": 0.8847117794486216,
|
287 |
+
"eval_f1": 0.8609292598654301,
|
288 |
+
"eval_loss": 0.2825632393360138,
|
289 |
+
"eval_precision": 0.8609292598654301,
|
290 |
+
"eval_recall": 0.8609292598654301,
|
291 |
+
"eval_runtime": 5.071,
|
292 |
+
"eval_samples_per_second": 78.683,
|
293 |
+
"eval_steps_per_second": 9.86,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 5.605799674987793,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.2477,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.8847117794486216,
|
306 |
+
"eval_f1": 0.8602260265626904,
|
307 |
+
"eval_loss": 0.2795054018497467,
|
308 |
+
"eval_precision": 0.8620943049601959,
|
309 |
+
"eval_recall": 0.8584288052373159,
|
310 |
+
"eval_runtime": 5.063,
|
311 |
+
"eval_samples_per_second": 78.807,
|
312 |
+
"eval_steps_per_second": 9.876,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 1.4996304512023926,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.2426,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.8796992481203008,
|
325 |
+
"eval_f1": 0.8526315789473684,
|
326 |
+
"eval_loss": 0.2793760895729065,
|
327 |
+
"eval_precision": 0.8585304054054055,
|
328 |
+
"eval_recall": 0.8473813420621932,
|
329 |
+
"eval_runtime": 5.0574,
|
330 |
+
"eval_samples_per_second": 78.894,
|
331 |
+
"eval_steps_per_second": 9.886,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 3.353811264038086,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.2359,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.8872180451127819,
|
344 |
+
"eval_f1": 0.8629148629148629,
|
345 |
+
"eval_loss": 0.27959930896759033,
|
346 |
+
"eval_precision": 0.8657894736842104,
|
347 |
+
"eval_recall": 0.860201854882706,
|
348 |
+
"eval_runtime": 5.0719,
|
349 |
+
"eval_samples_per_second": 78.668,
|
350 |
+
"eval_steps_per_second": 9.858,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 6.069816589355469,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.2417,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.8847117794486216,
|
363 |
+
"eval_f1": 0.8587719298245614,
|
364 |
+
"eval_loss": 0.27870801091194153,
|
365 |
+
"eval_precision": 0.864771021021021,
|
366 |
+
"eval_recall": 0.8534278959810875,
|
367 |
+
"eval_runtime": 5.0523,
|
368 |
+
"eval_samples_per_second": 78.973,
|
369 |
+
"eval_steps_per_second": 9.896,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 4.868233680725098,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.2319,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.8847117794486216,
|
382 |
+
"eval_f1": 0.8587719298245614,
|
383 |
+
"eval_loss": 0.2786270081996918,
|
384 |
+
"eval_precision": 0.864771021021021,
|
385 |
+
"eval_recall": 0.8534278959810875,
|
386 |
+
"eval_runtime": 5.0608,
|
387 |
+
"eval_samples_per_second": 78.841,
|
388 |
+
"eval_steps_per_second": 9.88,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 7609911792720000.0,
|
395 |
+
"train_loss": 0.30967485005738304,
|
396 |
+
"train_runtime": 1934.4038,
|
397 |
+
"train_samples_per_second": 37.614,
|
398 |
+
"train_steps_per_second": 1.261
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|