apwic commited on
Commit
490dc37
1 Parent(s): 7a2ddce

End of training

Browse files
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  license: mit
3
  base_model: indolem/indobert-base-uncased
4
  tags:
 
1
  ---
2
+ language:
3
+ - id
4
  license: mit
5
  base_model: indolem/indobert-base-uncased
6
  tags:
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accuracy": 0.8911968348170128,
3
+ "epoch": 20.0,
4
+ "eval_accuracy": 0.87468671679198,
5
+ "eval_f1": 0.8456742372671576,
6
+ "eval_loss": 0.2945931851863861,
7
+ "eval_precision": 0.8536697247706422,
8
+ "eval_recall": 0.8388343335151845,
9
+ "eval_runtime": 1.7572,
10
+ "eval_samples": 399,
11
+ "eval_samples_per_second": 227.061,
12
+ "eval_steps_per_second": 28.454,
13
+ "f1": 0.8670309436127983,
14
+ "precision": 0.8734567901234568,
15
+ "recall": 0.8613359752252041,
16
+ "train_loss": 0.3118248751906098,
17
+ "train_runtime": 625.8688,
18
+ "train_samples": 3638,
19
+ "train_samples_per_second": 116.254,
20
+ "train_steps_per_second": 3.899
21
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 20.0,
3
+ "eval_accuracy": 0.87468671679198,
4
+ "eval_f1": 0.8456742372671576,
5
+ "eval_loss": 0.2945931851863861,
6
+ "eval_precision": 0.8536697247706422,
7
+ "eval_recall": 0.8388343335151845,
8
+ "eval_runtime": 1.7572,
9
+ "eval_samples": 399,
10
+ "eval_samples_per_second": 227.061,
11
+ "eval_steps_per_second": 28.454
12
+ }
predict_results.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "accuracy": 0.8911968348170128,
3
+ "f1": 0.8670309436127983,
4
+ "precision": 0.8734567901234568,
5
+ "recall": 0.8613359752252041
6
+ }
predict_results.txt ADDED
@@ -0,0 +1,1012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ index prediction
2
+ 0 1
3
+ 1 1
4
+ 2 1
5
+ 3 1
6
+ 4 1
7
+ 5 0
8
+ 6 0
9
+ 7 1
10
+ 8 1
11
+ 9 1
12
+ 10 1
13
+ 11 1
14
+ 12 1
15
+ 13 1
16
+ 14 1
17
+ 15 1
18
+ 16 0
19
+ 17 1
20
+ 18 0
21
+ 19 0
22
+ 20 1
23
+ 21 1
24
+ 22 1
25
+ 23 1
26
+ 24 1
27
+ 25 1
28
+ 26 1
29
+ 27 1
30
+ 28 1
31
+ 29 1
32
+ 30 0
33
+ 31 0
34
+ 32 1
35
+ 33 1
36
+ 34 1
37
+ 35 1
38
+ 36 0
39
+ 37 1
40
+ 38 1
41
+ 39 0
42
+ 40 0
43
+ 41 1
44
+ 42 1
45
+ 43 1
46
+ 44 0
47
+ 45 1
48
+ 46 0
49
+ 47 1
50
+ 48 1
51
+ 49 1
52
+ 50 1
53
+ 51 1
54
+ 52 1
55
+ 53 1
56
+ 54 1
57
+ 55 1
58
+ 56 1
59
+ 57 0
60
+ 58 1
61
+ 59 1
62
+ 60 1
63
+ 61 1
64
+ 62 1
65
+ 63 1
66
+ 64 1
67
+ 65 1
68
+ 66 1
69
+ 67 1
70
+ 68 1
71
+ 69 0
72
+ 70 1
73
+ 71 0
74
+ 72 1
75
+ 73 0
76
+ 74 1
77
+ 75 1
78
+ 76 1
79
+ 77 0
80
+ 78 1
81
+ 79 1
82
+ 80 1
83
+ 81 1
84
+ 82 1
85
+ 83 1
86
+ 84 0
87
+ 85 1
88
+ 86 1
89
+ 87 0
90
+ 88 1
91
+ 89 1
92
+ 90 1
93
+ 91 0
94
+ 92 1
95
+ 93 1
96
+ 94 1
97
+ 95 1
98
+ 96 1
99
+ 97 1
100
+ 98 1
101
+ 99 1
102
+ 100 1
103
+ 101 1
104
+ 102 1
105
+ 103 1
106
+ 104 0
107
+ 105 0
108
+ 106 1
109
+ 107 0
110
+ 108 1
111
+ 109 1
112
+ 110 0
113
+ 111 1
114
+ 112 0
115
+ 113 0
116
+ 114 0
117
+ 115 1
118
+ 116 1
119
+ 117 0
120
+ 118 1
121
+ 119 1
122
+ 120 1
123
+ 121 0
124
+ 122 1
125
+ 123 0
126
+ 124 1
127
+ 125 0
128
+ 126 1
129
+ 127 1
130
+ 128 0
131
+ 129 1
132
+ 130 1
133
+ 131 1
134
+ 132 1
135
+ 133 1
136
+ 134 1
137
+ 135 1
138
+ 136 0
139
+ 137 1
140
+ 138 1
141
+ 139 1
142
+ 140 1
143
+ 141 1
144
+ 142 0
145
+ 143 1
146
+ 144 1
147
+ 145 1
148
+ 146 1
149
+ 147 1
150
+ 148 1
151
+ 149 1
152
+ 150 1
153
+ 151 0
154
+ 152 0
155
+ 153 1
156
+ 154 1
157
+ 155 1
158
+ 156 1
159
+ 157 1
160
+ 158 1
161
+ 159 1
162
+ 160 1
163
+ 161 1
164
+ 162 1
165
+ 163 1
166
+ 164 0
167
+ 165 1
168
+ 166 1
169
+ 167 1
170
+ 168 1
171
+ 169 1
172
+ 170 0
173
+ 171 1
174
+ 172 1
175
+ 173 0
176
+ 174 0
177
+ 175 1
178
+ 176 0
179
+ 177 0
180
+ 178 1
181
+ 179 1
182
+ 180 0
183
+ 181 0
184
+ 182 1
185
+ 183 1
186
+ 184 1
187
+ 185 1
188
+ 186 1
189
+ 187 1
190
+ 188 1
191
+ 189 1
192
+ 190 1
193
+ 191 1
194
+ 192 1
195
+ 193 1
196
+ 194 1
197
+ 195 1
198
+ 196 1
199
+ 197 0
200
+ 198 1
201
+ 199 1
202
+ 200 0
203
+ 201 1
204
+ 202 1
205
+ 203 0
206
+ 204 0
207
+ 205 1
208
+ 206 1
209
+ 207 1
210
+ 208 1
211
+ 209 1
212
+ 210 1
213
+ 211 1
214
+ 212 1
215
+ 213 1
216
+ 214 0
217
+ 215 0
218
+ 216 1
219
+ 217 0
220
+ 218 0
221
+ 219 0
222
+ 220 1
223
+ 221 1
224
+ 222 1
225
+ 223 1
226
+ 224 1
227
+ 225 1
228
+ 226 1
229
+ 227 1
230
+ 228 1
231
+ 229 1
232
+ 230 1
233
+ 231 1
234
+ 232 1
235
+ 233 1
236
+ 234 0
237
+ 235 0
238
+ 236 0
239
+ 237 1
240
+ 238 0
241
+ 239 0
242
+ 240 1
243
+ 241 1
244
+ 242 1
245
+ 243 1
246
+ 244 1
247
+ 245 1
248
+ 246 1
249
+ 247 1
250
+ 248 1
251
+ 249 1
252
+ 250 1
253
+ 251 1
254
+ 252 1
255
+ 253 1
256
+ 254 1
257
+ 255 1
258
+ 256 1
259
+ 257 1
260
+ 258 1
261
+ 259 1
262
+ 260 0
263
+ 261 1
264
+ 262 1
265
+ 263 1
266
+ 264 1
267
+ 265 0
268
+ 266 0
269
+ 267 1
270
+ 268 1
271
+ 269 1
272
+ 270 1
273
+ 271 1
274
+ 272 1
275
+ 273 1
276
+ 274 1
277
+ 275 0
278
+ 276 1
279
+ 277 1
280
+ 278 1
281
+ 279 1
282
+ 280 1
283
+ 281 1
284
+ 282 1
285
+ 283 1
286
+ 284 1
287
+ 285 1
288
+ 286 0
289
+ 287 1
290
+ 288 1
291
+ 289 1
292
+ 290 1
293
+ 291 1
294
+ 292 1
295
+ 293 1
296
+ 294 1
297
+ 295 1
298
+ 296 1
299
+ 297 1
300
+ 298 1
301
+ 299 0
302
+ 300 0
303
+ 301 0
304
+ 302 0
305
+ 303 0
306
+ 304 0
307
+ 305 0
308
+ 306 0
309
+ 307 0
310
+ 308 0
311
+ 309 0
312
+ 310 0
313
+ 311 0
314
+ 312 0
315
+ 313 0
316
+ 314 0
317
+ 315 0
318
+ 316 0
319
+ 317 0
320
+ 318 0
321
+ 319 0
322
+ 320 0
323
+ 321 0
324
+ 322 0
325
+ 323 0
326
+ 324 0
327
+ 325 0
328
+ 326 0
329
+ 327 0
330
+ 328 0
331
+ 329 0
332
+ 330 0
333
+ 331 0
334
+ 332 0
335
+ 333 0
336
+ 334 0
337
+ 335 0
338
+ 336 0
339
+ 337 0
340
+ 338 0
341
+ 339 0
342
+ 340 0
343
+ 341 0
344
+ 342 1
345
+ 343 0
346
+ 344 0
347
+ 345 1
348
+ 346 0
349
+ 347 0
350
+ 348 0
351
+ 349 0
352
+ 350 0
353
+ 351 0
354
+ 352 0
355
+ 353 0
356
+ 354 0
357
+ 355 0
358
+ 356 0
359
+ 357 0
360
+ 358 0
361
+ 359 0
362
+ 360 0
363
+ 361 0
364
+ 362 0
365
+ 363 0
366
+ 364 0
367
+ 365 0
368
+ 366 1
369
+ 367 0
370
+ 368 0
371
+ 369 0
372
+ 370 0
373
+ 371 0
374
+ 372 0
375
+ 373 0
376
+ 374 0
377
+ 375 0
378
+ 376 0
379
+ 377 0
380
+ 378 0
381
+ 379 1
382
+ 380 0
383
+ 381 0
384
+ 382 0
385
+ 383 0
386
+ 384 0
387
+ 385 0
388
+ 386 0
389
+ 387 0
390
+ 388 0
391
+ 389 1
392
+ 390 0
393
+ 391 0
394
+ 392 0
395
+ 393 0
396
+ 394 0
397
+ 395 0
398
+ 396 0
399
+ 397 0
400
+ 398 0
401
+ 399 0
402
+ 400 0
403
+ 401 0
404
+ 402 0
405
+ 403 0
406
+ 404 0
407
+ 405 0
408
+ 406 0
409
+ 407 0
410
+ 408 0
411
+ 409 1
412
+ 410 0
413
+ 411 0
414
+ 412 0
415
+ 413 1
416
+ 414 0
417
+ 415 0
418
+ 416 0
419
+ 417 1
420
+ 418 0
421
+ 419 0
422
+ 420 0
423
+ 421 0
424
+ 422 0
425
+ 423 1
426
+ 424 0
427
+ 425 0
428
+ 426 0
429
+ 427 0
430
+ 428 0
431
+ 429 0
432
+ 430 0
433
+ 431 0
434
+ 432 0
435
+ 433 0
436
+ 434 0
437
+ 435 0
438
+ 436 0
439
+ 437 0
440
+ 438 0
441
+ 439 0
442
+ 440 0
443
+ 441 1
444
+ 442 0
445
+ 443 0
446
+ 444 0
447
+ 445 0
448
+ 446 0
449
+ 447 0
450
+ 448 0
451
+ 449 0
452
+ 450 0
453
+ 451 0
454
+ 452 1
455
+ 453 0
456
+ 454 1
457
+ 455 0
458
+ 456 0
459
+ 457 0
460
+ 458 0
461
+ 459 0
462
+ 460 0
463
+ 461 0
464
+ 462 0
465
+ 463 0
466
+ 464 0
467
+ 465 0
468
+ 466 0
469
+ 467 0
470
+ 468 0
471
+ 469 0
472
+ 470 0
473
+ 471 0
474
+ 472 0
475
+ 473 0
476
+ 474 0
477
+ 475 0
478
+ 476 0
479
+ 477 0
480
+ 478 1
481
+ 479 0
482
+ 480 0
483
+ 481 0
484
+ 482 0
485
+ 483 0
486
+ 484 0
487
+ 485 0
488
+ 486 0
489
+ 487 0
490
+ 488 0
491
+ 489 0
492
+ 490 0
493
+ 491 0
494
+ 492 0
495
+ 493 0
496
+ 494 0
497
+ 495 0
498
+ 496 0
499
+ 497 0
500
+ 498 1
501
+ 499 0
502
+ 500 0
503
+ 501 1
504
+ 502 0
505
+ 503 0
506
+ 504 0
507
+ 505 0
508
+ 506 0
509
+ 507 0
510
+ 508 1
511
+ 509 0
512
+ 510 0
513
+ 511 0
514
+ 512 0
515
+ 513 0
516
+ 514 0
517
+ 515 0
518
+ 516 0
519
+ 517 0
520
+ 518 0
521
+ 519 0
522
+ 520 0
523
+ 521 0
524
+ 522 0
525
+ 523 0
526
+ 524 0
527
+ 525 0
528
+ 526 1
529
+ 527 0
530
+ 528 0
531
+ 529 0
532
+ 530 0
533
+ 531 0
534
+ 532 0
535
+ 533 1
536
+ 534 0
537
+ 535 0
538
+ 536 0
539
+ 537 0
540
+ 538 0
541
+ 539 0
542
+ 540 0
543
+ 541 0
544
+ 542 0
545
+ 543 0
546
+ 544 0
547
+ 545 0
548
+ 546 0
549
+ 547 0
550
+ 548 0
551
+ 549 0
552
+ 550 0
553
+ 551 0
554
+ 552 1
555
+ 553 0
556
+ 554 0
557
+ 555 0
558
+ 556 0
559
+ 557 0
560
+ 558 0
561
+ 559 0
562
+ 560 0
563
+ 561 0
564
+ 562 1
565
+ 563 0
566
+ 564 0
567
+ 565 0
568
+ 566 0
569
+ 567 0
570
+ 568 0
571
+ 569 0
572
+ 570 0
573
+ 571 0
574
+ 572 0
575
+ 573 0
576
+ 574 0
577
+ 575 0
578
+ 576 0
579
+ 577 0
580
+ 578 0
581
+ 579 0
582
+ 580 0
583
+ 581 0
584
+ 582 0
585
+ 583 0
586
+ 584 0
587
+ 585 0
588
+ 586 0
589
+ 587 0
590
+ 588 0
591
+ 589 0
592
+ 590 0
593
+ 591 0
594
+ 592 0
595
+ 593 0
596
+ 594 0
597
+ 595 0
598
+ 596 0
599
+ 597 0
600
+ 598 0
601
+ 599 0
602
+ 600 0
603
+ 601 0
604
+ 602 0
605
+ 603 1
606
+ 604 0
607
+ 605 0
608
+ 606 0
609
+ 607 0
610
+ 608 0
611
+ 609 0
612
+ 610 0
613
+ 611 0
614
+ 612 0
615
+ 613 0
616
+ 614 0
617
+ 615 0
618
+ 616 0
619
+ 617 0
620
+ 618 0
621
+ 619 0
622
+ 620 0
623
+ 621 0
624
+ 622 0
625
+ 623 0
626
+ 624 0
627
+ 625 0
628
+ 626 0
629
+ 627 0
630
+ 628 0
631
+ 629 0
632
+ 630 0
633
+ 631 0
634
+ 632 0
635
+ 633 0
636
+ 634 0
637
+ 635 0
638
+ 636 0
639
+ 637 0
640
+ 638 0
641
+ 639 0
642
+ 640 0
643
+ 641 0
644
+ 642 0
645
+ 643 0
646
+ 644 0
647
+ 645 0
648
+ 646 0
649
+ 647 0
650
+ 648 0
651
+ 649 0
652
+ 650 0
653
+ 651 0
654
+ 652 0
655
+ 653 0
656
+ 654 0
657
+ 655 0
658
+ 656 0
659
+ 657 0
660
+ 658 0
661
+ 659 0
662
+ 660 0
663
+ 661 0
664
+ 662 0
665
+ 663 1
666
+ 664 0
667
+ 665 0
668
+ 666 0
669
+ 667 0
670
+ 668 0
671
+ 669 0
672
+ 670 0
673
+ 671 0
674
+ 672 0
675
+ 673 0
676
+ 674 0
677
+ 675 0
678
+ 676 0
679
+ 677 0
680
+ 678 0
681
+ 679 0
682
+ 680 0
683
+ 681 0
684
+ 682 0
685
+ 683 0
686
+ 684 0
687
+ 685 0
688
+ 686 0
689
+ 687 0
690
+ 688 0
691
+ 689 0
692
+ 690 0
693
+ 691 0
694
+ 692 0
695
+ 693 0
696
+ 694 0
697
+ 695 0
698
+ 696 0
699
+ 697 0
700
+ 698 0
701
+ 699 0
702
+ 700 0
703
+ 701 0
704
+ 702 0
705
+ 703 0
706
+ 704 0
707
+ 705 0
708
+ 706 1
709
+ 707 0
710
+ 708 0
711
+ 709 0
712
+ 710 0
713
+ 711 0
714
+ 712 0
715
+ 713 0
716
+ 714 0
717
+ 715 0
718
+ 716 0
719
+ 717 0
720
+ 718 0
721
+ 719 0
722
+ 720 0
723
+ 721 1
724
+ 722 0
725
+ 723 0
726
+ 724 0
727
+ 725 0
728
+ 726 0
729
+ 727 0
730
+ 728 0
731
+ 729 0
732
+ 730 0
733
+ 731 0
734
+ 732 0
735
+ 733 0
736
+ 734 0
737
+ 735 0
738
+ 736 0
739
+ 737 0
740
+ 738 0
741
+ 739 0
742
+ 740 0
743
+ 741 0
744
+ 742 0
745
+ 743 0
746
+ 744 0
747
+ 745 0
748
+ 746 0
749
+ 747 0
750
+ 748 0
751
+ 749 0
752
+ 750 0
753
+ 751 0
754
+ 752 0
755
+ 753 0
756
+ 754 0
757
+ 755 1
758
+ 756 0
759
+ 757 0
760
+ 758 0
761
+ 759 0
762
+ 760 0
763
+ 761 0
764
+ 762 0
765
+ 763 0
766
+ 764 0
767
+ 765 0
768
+ 766 0
769
+ 767 0
770
+ 768 0
771
+ 769 0
772
+ 770 0
773
+ 771 0
774
+ 772 0
775
+ 773 0
776
+ 774 0
777
+ 775 0
778
+ 776 0
779
+ 777 0
780
+ 778 0
781
+ 779 0
782
+ 780 1
783
+ 781 0
784
+ 782 0
785
+ 783 1
786
+ 784 0
787
+ 785 0
788
+ 786 0
789
+ 787 0
790
+ 788 0
791
+ 789 0
792
+ 790 0
793
+ 791 0
794
+ 792 0
795
+ 793 0
796
+ 794 0
797
+ 795 0
798
+ 796 0
799
+ 797 0
800
+ 798 0
801
+ 799 0
802
+ 800 0
803
+ 801 0
804
+ 802 0
805
+ 803 0
806
+ 804 0
807
+ 805 0
808
+ 806 0
809
+ 807 0
810
+ 808 0
811
+ 809 0
812
+ 810 0
813
+ 811 0
814
+ 812 0
815
+ 813 0
816
+ 814 0
817
+ 815 0
818
+ 816 0
819
+ 817 0
820
+ 818 0
821
+ 819 0
822
+ 820 0
823
+ 821 0
824
+ 822 0
825
+ 823 0
826
+ 824 0
827
+ 825 0
828
+ 826 0
829
+ 827 0
830
+ 828 0
831
+ 829 0
832
+ 830 0
833
+ 831 0
834
+ 832 0
835
+ 833 0
836
+ 834 0
837
+ 835 0
838
+ 836 0
839
+ 837 0
840
+ 838 0
841
+ 839 0
842
+ 840 0
843
+ 841 0
844
+ 842 1
845
+ 843 0
846
+ 844 0
847
+ 845 0
848
+ 846 0
849
+ 847 0
850
+ 848 0
851
+ 849 0
852
+ 850 0
853
+ 851 0
854
+ 852 0
855
+ 853 0
856
+ 854 0
857
+ 855 0
858
+ 856 0
859
+ 857 0
860
+ 858 0
861
+ 859 0
862
+ 860 0
863
+ 861 0
864
+ 862 0
865
+ 863 0
866
+ 864 0
867
+ 865 0
868
+ 866 0
869
+ 867 1
870
+ 868 0
871
+ 869 0
872
+ 870 0
873
+ 871 0
874
+ 872 1
875
+ 873 0
876
+ 874 0
877
+ 875 0
878
+ 876 0
879
+ 877 0
880
+ 878 0
881
+ 879 0
882
+ 880 0
883
+ 881 0
884
+ 882 0
885
+ 883 0
886
+ 884 0
887
+ 885 0
888
+ 886 0
889
+ 887 0
890
+ 888 0
891
+ 889 0
892
+ 890 1
893
+ 891 0
894
+ 892 0
895
+ 893 0
896
+ 894 0
897
+ 895 0
898
+ 896 0
899
+ 897 0
900
+ 898 0
901
+ 899 1
902
+ 900 0
903
+ 901 0
904
+ 902 0
905
+ 903 0
906
+ 904 0
907
+ 905 0
908
+ 906 0
909
+ 907 0
910
+ 908 0
911
+ 909 0
912
+ 910 1
913
+ 911 0
914
+ 912 0
915
+ 913 0
916
+ 914 0
917
+ 915 0
918
+ 916 0
919
+ 917 0
920
+ 918 0
921
+ 919 0
922
+ 920 0
923
+ 921 0
924
+ 922 0
925
+ 923 0
926
+ 924 0
927
+ 925 1
928
+ 926 0
929
+ 927 0
930
+ 928 0
931
+ 929 0
932
+ 930 0
933
+ 931 0
934
+ 932 0
935
+ 933 1
936
+ 934 0
937
+ 935 0
938
+ 936 0
939
+ 937 1
940
+ 938 0
941
+ 939 0
942
+ 940 1
943
+ 941 0
944
+ 942 0
945
+ 943 0
946
+ 944 0
947
+ 945 0
948
+ 946 0
949
+ 947 0
950
+ 948 0
951
+ 949 0
952
+ 950 0
953
+ 951 0
954
+ 952 1
955
+ 953 1
956
+ 954 0
957
+ 955 0
958
+ 956 0
959
+ 957 0
960
+ 958 0
961
+ 959 0
962
+ 960 0
963
+ 961 0
964
+ 962 1
965
+ 963 0
966
+ 964 0
967
+ 965 0
968
+ 966 1
969
+ 967 0
970
+ 968 0
971
+ 969 1
972
+ 970 0
973
+ 971 0
974
+ 972 0
975
+ 973 0
976
+ 974 0
977
+ 975 0
978
+ 976 1
979
+ 977 0
980
+ 978 0
981
+ 979 0
982
+ 980 1
983
+ 981 0
984
+ 982 0
985
+ 983 0
986
+ 984 0
987
+ 985 1
988
+ 986 1
989
+ 987 0
990
+ 988 0
991
+ 989 0
992
+ 990 0
993
+ 991 0
994
+ 992 0
995
+ 993 0
996
+ 994 0
997
+ 995 0
998
+ 996 0
999
+ 997 0
1000
+ 998 0
1001
+ 999 0
1002
+ 1000 0
1003
+ 1001 0
1004
+ 1002 0
1005
+ 1003 0
1006
+ 1004 0
1007
+ 1005 0
1008
+ 1006 0
1009
+ 1007 0
1010
+ 1008 0
1011
+ 1009 0
1012
+ 1010 0
runs/Jun03_11-53-56_a358b85c7679/events.out.tfevents.1717416279.a358b85c7679.62335.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:518e7f65c430be25cf3d6590d0d7247c82caa39a6235ae8e3094635315c805cd
3
+ size 560
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 20.0,
3
+ "train_loss": 0.3118248751906098,
4
+ "train_runtime": 625.8688,
5
+ "train_samples": 3638,
6
+ "train_samples_per_second": 116.254,
7
+ "train_steps_per_second": 3.899
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 20.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2440,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "grad_norm": 4.055661201477051,
14
+ "learning_rate": 4.75e-05,
15
+ "loss": 0.5556,
16
+ "step": 122
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.7268170426065163,
21
+ "eval_f1": 0.6351456783080679,
22
+ "eval_loss": 0.5150498151779175,
23
+ "eval_precision": 0.660825575132723,
24
+ "eval_recall": 0.6267048554282597,
25
+ "eval_runtime": 1.7164,
26
+ "eval_samples_per_second": 232.466,
27
+ "eval_steps_per_second": 29.131,
28
+ "step": 122
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "grad_norm": 4.175451755523682,
33
+ "learning_rate": 4.5e-05,
34
+ "loss": 0.4868,
35
+ "step": 244
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.7844611528822055,
40
+ "eval_f1": 0.7495328467153285,
41
+ "eval_loss": 0.47025182843208313,
42
+ "eval_precision": 0.7424812030075187,
43
+ "eval_recall": 0.7600018185124569,
44
+ "eval_runtime": 1.7481,
45
+ "eval_samples_per_second": 228.245,
46
+ "eval_steps_per_second": 28.602,
47
+ "step": 244
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "grad_norm": 3.4971930980682373,
52
+ "learning_rate": 4.25e-05,
53
+ "loss": 0.4308,
54
+ "step": 366
55
+ },
56
+ {
57
+ "epoch": 3.0,
58
+ "eval_accuracy": 0.8195488721804511,
59
+ "eval_f1": 0.7893841642228739,
60
+ "eval_loss": 0.4005482494831085,
61
+ "eval_precision": 0.7817733849834796,
62
+ "eval_recall": 0.799827241316603,
63
+ "eval_runtime": 1.7244,
64
+ "eval_samples_per_second": 231.38,
65
+ "eval_steps_per_second": 28.995,
66
+ "step": 366
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "grad_norm": 7.280220031738281,
71
+ "learning_rate": 4e-05,
72
+ "loss": 0.3892,
73
+ "step": 488
74
+ },
75
+ {
76
+ "epoch": 4.0,
77
+ "eval_accuracy": 0.8220551378446115,
78
+ "eval_f1": 0.7927666951960849,
79
+ "eval_loss": 0.38431689143180847,
80
+ "eval_precision": 0.7846867551923731,
81
+ "eval_recall": 0.8041007455901072,
82
+ "eval_runtime": 1.728,
83
+ "eval_samples_per_second": 230.903,
84
+ "eval_steps_per_second": 28.935,
85
+ "step": 488
86
+ },
87
+ {
88
+ "epoch": 5.0,
89
+ "grad_norm": 7.974445819854736,
90
+ "learning_rate": 3.7500000000000003e-05,
91
+ "loss": 0.3615,
92
+ "step": 610
93
+ },
94
+ {
95
+ "epoch": 5.0,
96
+ "eval_accuracy": 0.8521303258145363,
97
+ "eval_f1": 0.8254476698921143,
98
+ "eval_loss": 0.35448285937309265,
99
+ "eval_precision": 0.8192918192918193,
100
+ "eval_recall": 0.8328787052191308,
101
+ "eval_runtime": 1.7302,
102
+ "eval_samples_per_second": 230.604,
103
+ "eval_steps_per_second": 28.898,
104
+ "step": 610
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "grad_norm": 5.594826698303223,
109
+ "learning_rate": 3.5e-05,
110
+ "loss": 0.3255,
111
+ "step": 732
112
+ },
113
+ {
114
+ "epoch": 6.0,
115
+ "eval_accuracy": 0.8596491228070176,
116
+ "eval_f1": 0.8323529411764705,
117
+ "eval_loss": 0.3457643389701843,
118
+ "eval_precision": 0.8292704679231822,
119
+ "eval_recall": 0.8356973995271868,
120
+ "eval_runtime": 1.7308,
121
+ "eval_samples_per_second": 230.527,
122
+ "eval_steps_per_second": 28.888,
123
+ "step": 732
124
+ },
125
+ {
126
+ "epoch": 7.0,
127
+ "grad_norm": 3.2065014839172363,
128
+ "learning_rate": 3.2500000000000004e-05,
129
+ "loss": 0.3142,
130
+ "step": 854
131
+ },
132
+ {
133
+ "epoch": 7.0,
134
+ "eval_accuracy": 0.8596491228070176,
135
+ "eval_f1": 0.8289650949173301,
136
+ "eval_loss": 0.3296651840209961,
137
+ "eval_precision": 0.8325081997648369,
138
+ "eval_recall": 0.82569558101473,
139
+ "eval_runtime": 1.7337,
140
+ "eval_samples_per_second": 230.143,
141
+ "eval_steps_per_second": 28.84,
142
+ "step": 854
143
+ },
144
+ {
145
+ "epoch": 8.0,
146
+ "grad_norm": 5.79945707321167,
147
+ "learning_rate": 3e-05,
148
+ "loss": 0.3002,
149
+ "step": 976
150
+ },
151
+ {
152
+ "epoch": 8.0,
153
+ "eval_accuracy": 0.8646616541353384,
154
+ "eval_f1": 0.8315033783783784,
155
+ "eval_loss": 0.32283803820610046,
156
+ "eval_precision": 0.8438775510204082,
157
+ "eval_recall": 0.8217403164211674,
158
+ "eval_runtime": 1.7335,
159
+ "eval_samples_per_second": 230.167,
160
+ "eval_steps_per_second": 28.843,
161
+ "step": 976
162
+ },
163
+ {
164
+ "epoch": 9.0,
165
+ "grad_norm": 7.0031962394714355,
166
+ "learning_rate": 2.7500000000000004e-05,
167
+ "loss": 0.2872,
168
+ "step": 1098
169
+ },
170
+ {
171
+ "epoch": 9.0,
172
+ "eval_accuracy": 0.8696741854636592,
173
+ "eval_f1": 0.842789598108747,
174
+ "eval_loss": 0.3236847221851349,
175
+ "eval_precision": 0.842789598108747,
176
+ "eval_recall": 0.842789598108747,
177
+ "eval_runtime": 1.7323,
178
+ "eval_samples_per_second": 230.33,
179
+ "eval_steps_per_second": 28.863,
180
+ "step": 1098
181
+ },
182
+ {
183
+ "epoch": 10.0,
184
+ "grad_norm": 8.21018123626709,
185
+ "learning_rate": 2.5e-05,
186
+ "loss": 0.2794,
187
+ "step": 1220
188
+ },
189
+ {
190
+ "epoch": 10.0,
191
+ "eval_accuracy": 0.8721804511278195,
192
+ "eval_f1": 0.8461962888779714,
193
+ "eval_loss": 0.3075161576271057,
194
+ "eval_precision": 0.8453465227094517,
195
+ "eval_recall": 0.8470631023822512,
196
+ "eval_runtime": 1.7347,
197
+ "eval_samples_per_second": 230.013,
198
+ "eval_steps_per_second": 28.824,
199
+ "step": 1220
200
+ },
201
+ {
202
+ "epoch": 11.0,
203
+ "grad_norm": 11.819586753845215,
204
+ "learning_rate": 2.25e-05,
205
+ "loss": 0.2698,
206
+ "step": 1342
207
+ },
208
+ {
209
+ "epoch": 11.0,
210
+ "eval_accuracy": 0.87468671679198,
211
+ "eval_f1": 0.8464912280701754,
212
+ "eval_loss": 0.305667906999588,
213
+ "eval_precision": 0.8522897897897899,
214
+ "eval_recall": 0.8413347881432988,
215
+ "eval_runtime": 1.7337,
216
+ "eval_samples_per_second": 230.142,
217
+ "eval_steps_per_second": 28.84,
218
+ "step": 1342
219
+ },
220
+ {
221
+ "epoch": 12.0,
222
+ "grad_norm": 17.956451416015625,
223
+ "learning_rate": 2e-05,
224
+ "loss": 0.2685,
225
+ "step": 1464
226
+ },
227
+ {
228
+ "epoch": 12.0,
229
+ "eval_accuracy": 0.87468671679198,
230
+ "eval_f1": 0.8456742372671576,
231
+ "eval_loss": 0.3076314628124237,
232
+ "eval_precision": 0.8536697247706422,
233
+ "eval_recall": 0.8388343335151845,
234
+ "eval_runtime": 1.7313,
235
+ "eval_samples_per_second": 230.463,
236
+ "eval_steps_per_second": 28.88,
237
+ "step": 1464
238
+ },
239
+ {
240
+ "epoch": 13.0,
241
+ "grad_norm": 2.3994736671447754,
242
+ "learning_rate": 1.75e-05,
243
+ "loss": 0.2585,
244
+ "step": 1586
245
+ },
246
+ {
247
+ "epoch": 13.0,
248
+ "eval_accuracy": 0.8721804511278195,
249
+ "eval_f1": 0.8430067043674827,
250
+ "eval_loss": 0.30824607610702515,
251
+ "eval_precision": 0.8498269896193772,
252
+ "eval_recall": 0.8370612838697945,
253
+ "eval_runtime": 1.7388,
254
+ "eval_samples_per_second": 229.463,
255
+ "eval_steps_per_second": 28.755,
256
+ "step": 1586
257
+ },
258
+ {
259
+ "epoch": 14.0,
260
+ "grad_norm": 12.113729476928711,
261
+ "learning_rate": 1.5e-05,
262
+ "loss": 0.2548,
263
+ "step": 1708
264
+ },
265
+ {
266
+ "epoch": 14.0,
267
+ "eval_accuracy": 0.8822055137844611,
268
+ "eval_f1": 0.8589543987905864,
269
+ "eval_loss": 0.2982984185218811,
270
+ "eval_precision": 0.8564068100358423,
271
+ "eval_recall": 0.8616566648481543,
272
+ "eval_runtime": 1.7324,
273
+ "eval_samples_per_second": 230.317,
274
+ "eval_steps_per_second": 28.862,
275
+ "step": 1708
276
+ },
277
+ {
278
+ "epoch": 15.0,
279
+ "grad_norm": 4.383078575134277,
280
+ "learning_rate": 1.25e-05,
281
+ "loss": 0.2391,
282
+ "step": 1830
283
+ },
284
+ {
285
+ "epoch": 15.0,
286
+ "eval_accuracy": 0.8721804511278195,
287
+ "eval_f1": 0.8430067043674827,
288
+ "eval_loss": 0.29739707708358765,
289
+ "eval_precision": 0.8498269896193772,
290
+ "eval_recall": 0.8370612838697945,
291
+ "eval_runtime": 1.7343,
292
+ "eval_samples_per_second": 230.06,
293
+ "eval_steps_per_second": 28.83,
294
+ "step": 1830
295
+ },
296
+ {
297
+ "epoch": 16.0,
298
+ "grad_norm": 3.95792818069458,
299
+ "learning_rate": 1e-05,
300
+ "loss": 0.2476,
301
+ "step": 1952
302
+ },
303
+ {
304
+ "epoch": 16.0,
305
+ "eval_accuracy": 0.87468671679198,
306
+ "eval_f1": 0.8495838108450449,
307
+ "eval_loss": 0.2973519563674927,
308
+ "eval_precision": 0.8478991596638655,
309
+ "eval_recall": 0.8513366066557555,
310
+ "eval_runtime": 1.7333,
311
+ "eval_samples_per_second": 230.195,
312
+ "eval_steps_per_second": 28.846,
313
+ "step": 1952
314
+ },
315
+ {
316
+ "epoch": 17.0,
317
+ "grad_norm": 2.338597059249878,
318
+ "learning_rate": 7.5e-06,
319
+ "loss": 0.243,
320
+ "step": 2074
321
+ },
322
+ {
323
+ "epoch": 17.0,
324
+ "eval_accuracy": 0.87468671679198,
325
+ "eval_f1": 0.8448388501742161,
326
+ "eval_loss": 0.2962024509906769,
327
+ "eval_precision": 0.8551721930610677,
328
+ "eval_recall": 0.8363338788870704,
329
+ "eval_runtime": 1.7332,
330
+ "eval_samples_per_second": 230.215,
331
+ "eval_steps_per_second": 28.849,
332
+ "step": 2074
333
+ },
334
+ {
335
+ "epoch": 18.0,
336
+ "grad_norm": 5.178797721862793,
337
+ "learning_rate": 5e-06,
338
+ "loss": 0.242,
339
+ "step": 2196
340
+ },
341
+ {
342
+ "epoch": 18.0,
343
+ "eval_accuracy": 0.8796992481203008,
344
+ "eval_f1": 0.8541488972828073,
345
+ "eval_loss": 0.2951340973377228,
346
+ "eval_precision": 0.8559859154929578,
347
+ "eval_recall": 0.8523822513184216,
348
+ "eval_runtime": 1.7361,
349
+ "eval_samples_per_second": 229.826,
350
+ "eval_steps_per_second": 28.8,
351
+ "step": 2196
352
+ },
353
+ {
354
+ "epoch": 19.0,
355
+ "grad_norm": 3.4869022369384766,
356
+ "learning_rate": 2.5e-06,
357
+ "loss": 0.2425,
358
+ "step": 2318
359
+ },
360
+ {
361
+ "epoch": 19.0,
362
+ "eval_accuracy": 0.87468671679198,
363
+ "eval_f1": 0.8456742372671576,
364
+ "eval_loss": 0.2940848469734192,
365
+ "eval_precision": 0.8536697247706422,
366
+ "eval_recall": 0.8388343335151845,
367
+ "eval_runtime": 1.7338,
368
+ "eval_samples_per_second": 230.127,
369
+ "eval_steps_per_second": 28.838,
370
+ "step": 2318
371
+ },
372
+ {
373
+ "epoch": 20.0,
374
+ "grad_norm": 3.7974979877471924,
375
+ "learning_rate": 0.0,
376
+ "loss": 0.2403,
377
+ "step": 2440
378
+ },
379
+ {
380
+ "epoch": 20.0,
381
+ "eval_accuracy": 0.87468671679198,
382
+ "eval_f1": 0.8456742372671576,
383
+ "eval_loss": 0.2945931851863861,
384
+ "eval_precision": 0.8536697247706422,
385
+ "eval_recall": 0.8388343335151845,
386
+ "eval_runtime": 1.7317,
387
+ "eval_samples_per_second": 230.406,
388
+ "eval_steps_per_second": 28.873,
389
+ "step": 2440
390
+ },
391
+ {
392
+ "epoch": 20.0,
393
+ "step": 2440,
394
+ "total_flos": 7635661149264000.0,
395
+ "train_loss": 0.3118248751906098,
396
+ "train_runtime": 625.8688,
397
+ "train_samples_per_second": 116.254,
398
+ "train_steps_per_second": 3.899
399
+ }
400
+ ],
401
+ "logging_steps": 500,
402
+ "max_steps": 2440,
403
+ "num_input_tokens_seen": 0,
404
+ "num_train_epochs": 20,
405
+ "save_steps": 500,
406
+ "total_flos": 7635661149264000.0,
407
+ "train_batch_size": 30,
408
+ "trial_name": null,
409
+ "trial_params": null
410
+ }