apurva19 commited on
Commit
e80a7e9
1 Parent(s): 3fb593b

Uploading PPO trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 169.27 +/- 65.96
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77bb793d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77bb793dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77bb793e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77bb793ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f77bb793f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f77bb79a050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77bb79a0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77bb79a170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77bb79a200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77bb79a290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77bb79a320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f77bb7ef150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659544307.3382015, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAszpwvlxfNjnTTo06ZSW4N2ulBbwVBh65AACAPwAAgD8zsaq89mwtulfgAjpODmK12vkbuoI1GLkAAIA/AACAP82u+r5Felg+seMXPmLiY770ZLW9rzKoOwAAAAAAAAAA2kCXvSkIGLqumCu7Z4yVtvnqQzuOJko6AACAPwAAgD+G3nE+3MoiPk7g072FGNW9SPrzvMDDHbwAAAAAAAAAAM2ZnD4/RXM+jdtRvYnAUb4kPPK8vYKkvQAAAAAAAAAAEDirPlTOkD3KhkO7VKWYuW6VjD7T29g6AACAPwAAgD/AuYq9j457uko4qrmS3hW10WgbuoIxxTgAAIA/AACAP9oQwz37ws09E3tGvbFkLr3rrPO7K81kPQAAAAAAAAAA2jnCvUjrg7p+NYe7gBW3OKJ9ArqGTgw6AACAPwAAgD+Aa8Q9Uui+uehH4bsz9W22pGqAO8My3jUAAIA/AACAP6YUlz5yBKQ/orqPPueqlb5PQGQ+/XNXvQAAAAAAAAAAZjjGvIVjkLmBoAw5BhL0NKYl17pbmCW4AACAPwAAgD/mZFc+10cGPCqvibw3lSy6E7GFPa70ILsAAIA/AACAP00tqD603ow/4vubPpFAiL7KZaA+coiMvAAAAAAAAAAAGjNLvhjstT72f108QEkkvsr6Db0lsxc9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILXdmgmHxYECUhpRSlIwBbJRN6AOMAXSUR0B8cD446wMZdX2UKGgGaAloD0MIf8Fu2DaBakCUhpRSlGgVTXUCaBZHQHyKuKwY+B91fZQoaAZoCWgPQwjTTzi7tfxLQJSGlFKUaBVN6ANoFkdAfKiV/MGHHnV9lChoBmgJaA9DCCld+pek3WBAlIaUUpRoFU3oA2gWR0B8x4dp7CzkdX2UKGgGaAloD0MIy4Rf6ucgYkCUhpRSlGgVTegDaBZHQHzT362v0RR1fZQoaAZoCWgPQwiaRL3g08BTQJSGlFKUaBVN6ANoFkdAfOMakAPuonV9lChoBmgJaA9DCJYKKqp+YWhAlIaUUpRoFU23AmgWR0B9YBR3u/lAdX2UKGgGaAloD0MIUaBP5En5YECUhpRSlGgVTegDaBZHQH1gImCyyD91fZQoaAZoCWgPQwgA4q5exRBgQJSGlFKUaBVN6ANoFkdAfWHRGtp22XV9lChoBmgJaA9DCPsfYK3a1V5AlIaUUpRoFU3oA2gWR0B9Z4HZ9NN8dX2UKGgGaAloD0MIHVVNEHVXYkCUhpRSlGgVTegDaBZHQH16AGjbi6x1fZQoaAZoCWgPQwgcRGtFG/hiQJSGlFKUaBVN6ANoFkdAfZk3aBZpz3V9lChoBmgJaA9DCGE0K9uH62VAlIaUUpRoFU3oA2gWR0B9y0U0vXbudX2UKGgGaAloD0MI9zsUBfoCYECUhpRSlGgVTegDaBZHQH3OJ+QU5+91fZQoaAZoCWgPQwgAxjNo6N8swJSGlFKUaBVNTwFoFkdAfdEDjR2KVXV9lChoBmgJaA9DCBkdkIR9+0BAlIaUUpRoFU1FAWgWR0B965jUd7v5dX2UKGgGaAloD0MIFQDjGTQwX0CUhpRSlGgVTegDaBZHQH32s1wYLst1fZQoaAZoCWgPQwjHYwYq4x5eQJSGlFKUaBVN6ANoFkdAffscLBsQ/XV9lChoBmgJaA9DCJojK78MpWBAlIaUUpRoFU3oA2gWR0B+EpxZMcp9dX2UKGgGaAloD0MIaTf6mA9RW0CUhpRSlGgVTegDaBZHQH4qvseGO+91fZQoaAZoCWgPQwj0/GmjOo0aQJSGlFKUaBVL6GgWR0B+MzJfYzzmdX2UKGgGaAloD0MIYobGE0HaYECUhpRSlGgVTegDaBZHQH5EMZHd43Z1fZQoaAZoCWgPQwg9ZTVdT5FkQJSGlFKUaBVNyQJoFkdAfkeZeiSJTHV9lChoBmgJaA9DCCocQSrFtj3AlIaUUpRoFU00AWgWR0B+U+B9Tgl4dX2UKGgGaAloD0MI5+RFJuCVYECUhpRSlGgVTegDaBZHQH5cZnQID5l1fZQoaAZoCWgPQwguH0lJj9NhQJSGlFKUaBVN6ANoFkdAfmTe7L+xW3V9lChoBmgJaA9DCGLboswGFV5AlIaUUpRoFU3oA2gWR0B+b+CK77KrdX2UKGgGaAloD0MIG0gXm1ZqHsCUhpRSlGgVTR0BaBZHQH5+vX5FgD11fZQoaAZoCWgPQwhighq+hdheQJSGlFKUaBVN6ANoFkdAfuIN7jT8YXV9lChoBmgJaA9DCCXNH9PagFxAlIaUUpRoFU3oA2gWR0B+5vtWuHN5dX2UKGgGaAloD0MIm+RH/IrZUECUhpRSlGgVTegDaBZHQH8WnMyJsO51fZQoaAZoCWgPQwiQ3QVKijZhQJSGlFKUaBVN6ANoFkdAf0nxeb/ff3V9lChoBmgJaA9DCL5MFCH1hGRAlIaUUpRoFU3oA2gWR0B/TOLaVUuMdX2UKGgGaAloD0MIAfbRqSuMX0CUhpRSlGgVTegDaBZHQH9PoEOiFkB1fZQoaAZoCWgPQwjL1voioRBeQJSGlFKUaBVN6ANoFkdAf3LOW0JF9nV9lChoBmgJaA9DCPoK0ozFzWFAlIaUUpRoFU3oA2gWR0B/kAh+vyLAdX2UKGgGaAloD0MII0p7gy8nWECUhpRSlGgVTegDaBZHQH+s6sySFGp1fZQoaAZoCWgPQwiGdePdkSdDQJSGlFKUaBVN6ANoFkdAf8vWBz3h43V9lChoBmgJaA9DCP2H9NvXKFFAlIaUUpRoFU3oA2gWR0B/z8iX6ZYxdX2UKGgGaAloD0MIfuNrzywWV0CUhpRSlGgVTegDaBZHQH/dFa4c3l11fZQoaAZoCWgPQwhRZ+4hYYFkQJSGlFKUaBVN6ANoFkdAf+WcCo0hvHV9lChoBmgJaA9DCIknu5nRdWVAlIaUUpRoFU3oA2gWR0B/7mZ6Uqx1dX2UKGgGaAloD0MIqiheZW1KX0CUhpRSlGgVTegDaBZHQH/6NdVvMr51fZQoaAZoCWgPQwgouFhRA+9jQJSGlFKUaBVN6ANoFkdAgAQvo/zJ63V9lChoBmgJaA9DCMpOP6gL7WBAlIaUUpRoFU3oA2gWR0CANcVt4zJqdX2UKGgGaAloD0MIEoWWdf9wQUCUhpRSlGgVS7hoFkdAgDYRgAp8W3V9lChoBmgJaA9DCGYv205bIURAlIaUUpRoFU3oA2gWR0CAOBahYeT3dX2UKGgGaAloD0MI/5Hp0Ol6YECUhpRSlGgVTegDaBZHQIBNzdP+GXZ1fZQoaAZoCWgPQwgPQ6uTM1xeQJSGlFKUaBVN6ANoFkdAgGRh6Skj5nV9lChoBmgJaA9DCJBrQ8U4vGRAlIaUUpRoFU3oA2gWR0CAZahHLA58dX2UKGgGaAloD0MI8u7IWO15YUCUhpRSlGgVTegDaBZHQIBm9aIN3GJ1fZQoaAZoCWgPQwgS91j60G1gQJSGlFKUaBVN6ANoFkdAgHdJW3jMmnV9lChoBmgJaA9DCCAkC5jA82BAlIaUUpRoFU3oA2gWR0CAhFzRQaaTdX2UKGgGaAloD0MIN2+cFObWYECUhpRSlGgVTegDaBZHQICRTMX7+DR1fZQoaAZoCWgPQwjfpGlQNJpiQJSGlFKUaBVN6ANoFkdAgJ7LsKLKm3V9lChoBmgJaA9DCC5Yqgt4kFtAlIaUUpRoFU3oA2gWR0CAoG2lVLi/dX2UKGgGaAloD0MIiL1QwHZ+X0CUhpRSlGgVTegDaBZHQICm2/L1VYJ1fZQoaAZoCWgPQwi0OjlDcacKwJSGlFKUaBVNAgFoFkdAgKpf1pTMq3V9lChoBmgJaA9DCEVnmUUoMV1AlIaUUpRoFU3oA2gWR0CAqxLQokRjdX2UKGgGaAloD0MIWcAEbt3KX0CUhpRSlGgVTegDaBZHQIC1Rrvb48F1fZQoaAZoCWgPQwhmLnB5rE1VQJSGlFKUaBVLvGgWR0CAuAiXY150dX2UKGgGaAloD0MIPdLgtrYvXkCUhpRSlGgVTegDaBZHQIC800WM0gt1fZQoaAZoCWgPQwhtUzwuqvhiQJSGlFKUaBVN6ANoFkdAgMb8Djin53V9lChoBmgJaA9DCC6u8ZnsjFRAlIaUUpRoFU3oA2gWR0CAx0A3kxREdX2UKGgGaAloD0MIZmt9kVBNYUCUhpRSlGgVTegDaBZHQIDwq90zTF51fZQoaAZoCWgPQwh9JZASu9hBQJSGlFKUaBVLymgWR0CA9iU7CBPLdX2UKGgGaAloD0MIR3cQO1OII0CUhpRSlGgVS/FoFkdAgQLnS4OMEXV9lChoBmgJaA9DCL+6KlCLI2BAlIaUUpRoFU3oA2gWR0CBBM3Td+G5dX2UKGgGaAloD0MIh6WBH9WoJkCUhpRSlGgVS81oFkdAgQtUaZQYUHV9lChoBmgJaA9DCEkT7wBPhFxAlIaUUpRoFU3oA2gWR0CBGNWkJrtWdX2UKGgGaAloD0MIhNTt7Cs+Y0CUhpRSlGgVTegDaBZHQIEZ+UQkHD91fZQoaAZoCWgPQwgaTwRxHiFrQJSGlFKUaBVN0wJoFkdAgRsCTUy57XV9lChoBmgJaA9DCAHD8udbwWBAlIaUUpRoFU3oA2gWR0CBGyV/MGHIdX2UKGgGaAloD0MIFr1TAXdGYECUhpRSlGgVTegDaBZHQIEpN7tzCDV1fZQoaAZoCWgPQwjtnjws1DY9wJSGlFKUaBVLzmgWR0CBOP7xd6cBdX2UKGgGaAloD0MI6gWf5uSEW0CUhpRSlGgVTegDaBZHQIFYJtix3V11fZQoaAZoCWgPQwj5ZMVw9QJlQJSGlFKUaBVN6ANoFkdAgV/5tNzr/3V9lChoBmgJaA9DCKYJ20/GnFdAlIaUUpRoFU3oA2gWR0CBZDhlUZNxdX2UKGgGaAloD0MIZvZ5jPJDW0CUhpRSlGgVTegDaBZHQIFlAUi6g/V1fZQoaAZoCWgPQwiJRQw7jG1jQJSGlFKUaBVN6ANoFkdAgXNrORkmQnV9lChoBmgJaA9DCK/sgsG1MWJAlIaUUpRoFU3oA2gWR0CBg9+pfhMrdX2UKGgGaAloD0MIdeeJ5+wmYECUhpRSlGgVTegDaBZHQIGELoOhCdB1fZQoaAZoCWgPQwig/x68ds5bQJSGlFKUaBVN6ANoFkdAgbPkaMrEtXV9lChoBmgJaA9DCGg8EcR5R1tAlIaUUpRoFU3oA2gWR0CBwijN6gM+dX2UKGgGaAloD0MIP8iyYGIHYUCUhpRSlGgVTegDaBZHQIHEDOiWVu91fZQoaAZoCWgPQwjTMlLvqa9oQJSGlFKUaBVNpAJoFkdAgcktXYDkl3V9lChoBmgJaA9DCP5EZcOaN2BAlIaUUpRoFU3oA2gWR0CBysgntv4udX2UKGgGaAloD0MIck9XdyzUU0CUhpRSlGgVTegDaBZHQIHWvK6nR9h1fZQoaAZoCWgPQwhKXp1jQLhdQJSGlFKUaBVN6ANoFkdAgdfCxmkFfXV9lChoBmgJaA9DCMb3xaUqLGJAlIaUUpRoFU3oA2gWR0CB2MtXgccVdX2UKGgGaAloD0MI+7FJfsTVY0CUhpRSlGgVTegDaBZHQIHmQlQdjoZ1fZQoaAZoCWgPQwgQPpRoyfM4wJSGlFKUaBVNTgFoFkdAggk7/GVAzHV9lChoBmgJaA9DCIz34/bL22FAlIaUUpRoFU3oA2gWR0CCEjqZ+hGpdX2UKGgGaAloD0MIysUYWEfxY0CUhpRSlGgVTegDaBZHQIIZ/6/IsAh1fZQoaAZoCWgPQwhDccebfM1hQJSGlFKUaBVN6ANoFkdAgh4mmLtNSXV9lChoBmgJaA9DCKBQTx8B+mFAlIaUUpRoFU3oA2gWR0CCHu5e7cwhdX2UKGgGaAloD0MI34yar5KXLkCUhpRSlGgVS95oFkdAgi1SCe2/jHV9lChoBmgJaA9DCK4upwTEqGBAlIaUUpRoFU3oA2gWR0CCLk9DhLoPdX2UKGgGaAloD0MIBP9byY7JZECUhpRSlGgVTegDaBZHQIJAZjUd7v51fZQoaAZoCWgPQwjniedsAdRbQJSGlFKUaBVN6ANoFkdAgkDkeQuEmXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0d10483a8c221bb983609bf904c81269d5213322ad311ca3133808da1236c71
3
+ size 146988
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77bb793d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77bb793dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77bb793e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77bb793ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f77bb793f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f77bb79a050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77bb79a0e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f77bb79a170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77bb79a200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77bb79a290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77bb79a320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f77bb7ef150>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1659544307.3382015,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAszpwvlxfNjnTTo06ZSW4N2ulBbwVBh65AACAPwAAgD8zsaq89mwtulfgAjpODmK12vkbuoI1GLkAAIA/AACAP82u+r5Felg+seMXPmLiY770ZLW9rzKoOwAAAAAAAAAA2kCXvSkIGLqumCu7Z4yVtvnqQzuOJko6AACAPwAAgD+G3nE+3MoiPk7g072FGNW9SPrzvMDDHbwAAAAAAAAAAM2ZnD4/RXM+jdtRvYnAUb4kPPK8vYKkvQAAAAAAAAAAEDirPlTOkD3KhkO7VKWYuW6VjD7T29g6AACAPwAAgD/AuYq9j457uko4qrmS3hW10WgbuoIxxTgAAIA/AACAP9oQwz37ws09E3tGvbFkLr3rrPO7K81kPQAAAAAAAAAA2jnCvUjrg7p+NYe7gBW3OKJ9ArqGTgw6AACAPwAAgD+Aa8Q9Uui+uehH4bsz9W22pGqAO8My3jUAAIA/AACAP6YUlz5yBKQ/orqPPueqlb5PQGQ+/XNXvQAAAAAAAAAAZjjGvIVjkLmBoAw5BhL0NKYl17pbmCW4AACAPwAAgD/mZFc+10cGPCqvibw3lSy6E7GFPa70ILsAAIA/AACAP00tqD603ow/4vubPpFAiL7KZaA+coiMvAAAAAAAAAAAGjNLvhjstT72f108QEkkvsr6Db0lsxc9AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILXdmgmHxYECUhpRSlIwBbJRN6AOMAXSUR0B8cD446wMZdX2UKGgGaAloD0MIf8Fu2DaBakCUhpRSlGgVTXUCaBZHQHyKuKwY+B91fZQoaAZoCWgPQwjTTzi7tfxLQJSGlFKUaBVN6ANoFkdAfKiV/MGHHnV9lChoBmgJaA9DCCld+pek3WBAlIaUUpRoFU3oA2gWR0B8x4dp7CzkdX2UKGgGaAloD0MIy4Rf6ucgYkCUhpRSlGgVTegDaBZHQHzT362v0RR1fZQoaAZoCWgPQwiaRL3g08BTQJSGlFKUaBVN6ANoFkdAfOMakAPuonV9lChoBmgJaA9DCJYKKqp+YWhAlIaUUpRoFU23AmgWR0B9YBR3u/lAdX2UKGgGaAloD0MIUaBP5En5YECUhpRSlGgVTegDaBZHQH1gImCyyD91fZQoaAZoCWgPQwgA4q5exRBgQJSGlFKUaBVN6ANoFkdAfWHRGtp22XV9lChoBmgJaA9DCPsfYK3a1V5AlIaUUpRoFU3oA2gWR0B9Z4HZ9NN8dX2UKGgGaAloD0MIHVVNEHVXYkCUhpRSlGgVTegDaBZHQH16AGjbi6x1fZQoaAZoCWgPQwgcRGtFG/hiQJSGlFKUaBVN6ANoFkdAfZk3aBZpz3V9lChoBmgJaA9DCGE0K9uH62VAlIaUUpRoFU3oA2gWR0B9y0U0vXbudX2UKGgGaAloD0MI9zsUBfoCYECUhpRSlGgVTegDaBZHQH3OJ+QU5+91fZQoaAZoCWgPQwgAxjNo6N8swJSGlFKUaBVNTwFoFkdAfdEDjR2KVXV9lChoBmgJaA9DCBkdkIR9+0BAlIaUUpRoFU1FAWgWR0B965jUd7v5dX2UKGgGaAloD0MIFQDjGTQwX0CUhpRSlGgVTegDaBZHQH32s1wYLst1fZQoaAZoCWgPQwjHYwYq4x5eQJSGlFKUaBVN6ANoFkdAffscLBsQ/XV9lChoBmgJaA9DCJojK78MpWBAlIaUUpRoFU3oA2gWR0B+EpxZMcp9dX2UKGgGaAloD0MIaTf6mA9RW0CUhpRSlGgVTegDaBZHQH4qvseGO+91fZQoaAZoCWgPQwj0/GmjOo0aQJSGlFKUaBVL6GgWR0B+MzJfYzzmdX2UKGgGaAloD0MIYobGE0HaYECUhpRSlGgVTegDaBZHQH5EMZHd43Z1fZQoaAZoCWgPQwg9ZTVdT5FkQJSGlFKUaBVNyQJoFkdAfkeZeiSJTHV9lChoBmgJaA9DCCocQSrFtj3AlIaUUpRoFU00AWgWR0B+U+B9Tgl4dX2UKGgGaAloD0MI5+RFJuCVYECUhpRSlGgVTegDaBZHQH5cZnQID5l1fZQoaAZoCWgPQwguH0lJj9NhQJSGlFKUaBVN6ANoFkdAfmTe7L+xW3V9lChoBmgJaA9DCGLboswGFV5AlIaUUpRoFU3oA2gWR0B+b+CK77KrdX2UKGgGaAloD0MIG0gXm1ZqHsCUhpRSlGgVTR0BaBZHQH5+vX5FgD11fZQoaAZoCWgPQwhighq+hdheQJSGlFKUaBVN6ANoFkdAfuIN7jT8YXV9lChoBmgJaA9DCCXNH9PagFxAlIaUUpRoFU3oA2gWR0B+5vtWuHN5dX2UKGgGaAloD0MIm+RH/IrZUECUhpRSlGgVTegDaBZHQH8WnMyJsO51fZQoaAZoCWgPQwiQ3QVKijZhQJSGlFKUaBVN6ANoFkdAf0nxeb/ff3V9lChoBmgJaA9DCL5MFCH1hGRAlIaUUpRoFU3oA2gWR0B/TOLaVUuMdX2UKGgGaAloD0MIAfbRqSuMX0CUhpRSlGgVTegDaBZHQH9PoEOiFkB1fZQoaAZoCWgPQwjL1voioRBeQJSGlFKUaBVN6ANoFkdAf3LOW0JF9nV9lChoBmgJaA9DCPoK0ozFzWFAlIaUUpRoFU3oA2gWR0B/kAh+vyLAdX2UKGgGaAloD0MII0p7gy8nWECUhpRSlGgVTegDaBZHQH+s6sySFGp1fZQoaAZoCWgPQwiGdePdkSdDQJSGlFKUaBVN6ANoFkdAf8vWBz3h43V9lChoBmgJaA9DCP2H9NvXKFFAlIaUUpRoFU3oA2gWR0B/z8iX6ZYxdX2UKGgGaAloD0MIfuNrzywWV0CUhpRSlGgVTegDaBZHQH/dFa4c3l11fZQoaAZoCWgPQwhRZ+4hYYFkQJSGlFKUaBVN6ANoFkdAf+WcCo0hvHV9lChoBmgJaA9DCIknu5nRdWVAlIaUUpRoFU3oA2gWR0B/7mZ6Uqx1dX2UKGgGaAloD0MIqiheZW1KX0CUhpRSlGgVTegDaBZHQH/6NdVvMr51fZQoaAZoCWgPQwgouFhRA+9jQJSGlFKUaBVN6ANoFkdAgAQvo/zJ63V9lChoBmgJaA9DCMpOP6gL7WBAlIaUUpRoFU3oA2gWR0CANcVt4zJqdX2UKGgGaAloD0MIEoWWdf9wQUCUhpRSlGgVS7hoFkdAgDYRgAp8W3V9lChoBmgJaA9DCGYv205bIURAlIaUUpRoFU3oA2gWR0CAOBahYeT3dX2UKGgGaAloD0MI/5Hp0Ol6YECUhpRSlGgVTegDaBZHQIBNzdP+GXZ1fZQoaAZoCWgPQwgPQ6uTM1xeQJSGlFKUaBVN6ANoFkdAgGRh6Skj5nV9lChoBmgJaA9DCJBrQ8U4vGRAlIaUUpRoFU3oA2gWR0CAZahHLA58dX2UKGgGaAloD0MI8u7IWO15YUCUhpRSlGgVTegDaBZHQIBm9aIN3GJ1fZQoaAZoCWgPQwgS91j60G1gQJSGlFKUaBVN6ANoFkdAgHdJW3jMmnV9lChoBmgJaA9DCCAkC5jA82BAlIaUUpRoFU3oA2gWR0CAhFzRQaaTdX2UKGgGaAloD0MIN2+cFObWYECUhpRSlGgVTegDaBZHQICRTMX7+DR1fZQoaAZoCWgPQwjfpGlQNJpiQJSGlFKUaBVN6ANoFkdAgJ7LsKLKm3V9lChoBmgJaA9DCC5Yqgt4kFtAlIaUUpRoFU3oA2gWR0CAoG2lVLi/dX2UKGgGaAloD0MIiL1QwHZ+X0CUhpRSlGgVTegDaBZHQICm2/L1VYJ1fZQoaAZoCWgPQwi0OjlDcacKwJSGlFKUaBVNAgFoFkdAgKpf1pTMq3V9lChoBmgJaA9DCEVnmUUoMV1AlIaUUpRoFU3oA2gWR0CAqxLQokRjdX2UKGgGaAloD0MIWcAEbt3KX0CUhpRSlGgVTegDaBZHQIC1Rrvb48F1fZQoaAZoCWgPQwhmLnB5rE1VQJSGlFKUaBVLvGgWR0CAuAiXY150dX2UKGgGaAloD0MIPdLgtrYvXkCUhpRSlGgVTegDaBZHQIC800WM0gt1fZQoaAZoCWgPQwhtUzwuqvhiQJSGlFKUaBVN6ANoFkdAgMb8Djin53V9lChoBmgJaA9DCC6u8ZnsjFRAlIaUUpRoFU3oA2gWR0CAx0A3kxREdX2UKGgGaAloD0MIZmt9kVBNYUCUhpRSlGgVTegDaBZHQIDwq90zTF51fZQoaAZoCWgPQwh9JZASu9hBQJSGlFKUaBVLymgWR0CA9iU7CBPLdX2UKGgGaAloD0MIR3cQO1OII0CUhpRSlGgVS/FoFkdAgQLnS4OMEXV9lChoBmgJaA9DCL+6KlCLI2BAlIaUUpRoFU3oA2gWR0CBBM3Td+G5dX2UKGgGaAloD0MIh6WBH9WoJkCUhpRSlGgVS81oFkdAgQtUaZQYUHV9lChoBmgJaA9DCEkT7wBPhFxAlIaUUpRoFU3oA2gWR0CBGNWkJrtWdX2UKGgGaAloD0MIhNTt7Cs+Y0CUhpRSlGgVTegDaBZHQIEZ+UQkHD91fZQoaAZoCWgPQwgaTwRxHiFrQJSGlFKUaBVN0wJoFkdAgRsCTUy57XV9lChoBmgJaA9DCAHD8udbwWBAlIaUUpRoFU3oA2gWR0CBGyV/MGHIdX2UKGgGaAloD0MIFr1TAXdGYECUhpRSlGgVTegDaBZHQIEpN7tzCDV1fZQoaAZoCWgPQwjtnjws1DY9wJSGlFKUaBVLzmgWR0CBOP7xd6cBdX2UKGgGaAloD0MI6gWf5uSEW0CUhpRSlGgVTegDaBZHQIFYJtix3V11fZQoaAZoCWgPQwj5ZMVw9QJlQJSGlFKUaBVN6ANoFkdAgV/5tNzr/3V9lChoBmgJaA9DCKYJ20/GnFdAlIaUUpRoFU3oA2gWR0CBZDhlUZNxdX2UKGgGaAloD0MIZvZ5jPJDW0CUhpRSlGgVTegDaBZHQIFlAUi6g/V1fZQoaAZoCWgPQwiJRQw7jG1jQJSGlFKUaBVN6ANoFkdAgXNrORkmQnV9lChoBmgJaA9DCK/sgsG1MWJAlIaUUpRoFU3oA2gWR0CBg9+pfhMrdX2UKGgGaAloD0MIdeeJ5+wmYECUhpRSlGgVTegDaBZHQIGELoOhCdB1fZQoaAZoCWgPQwig/x68ds5bQJSGlFKUaBVN6ANoFkdAgbPkaMrEtXV9lChoBmgJaA9DCGg8EcR5R1tAlIaUUpRoFU3oA2gWR0CBwijN6gM+dX2UKGgGaAloD0MIP8iyYGIHYUCUhpRSlGgVTegDaBZHQIHEDOiWVu91fZQoaAZoCWgPQwjTMlLvqa9oQJSGlFKUaBVNpAJoFkdAgcktXYDkl3V9lChoBmgJaA9DCP5EZcOaN2BAlIaUUpRoFU3oA2gWR0CBysgntv4udX2UKGgGaAloD0MIck9XdyzUU0CUhpRSlGgVTegDaBZHQIHWvK6nR9h1fZQoaAZoCWgPQwhKXp1jQLhdQJSGlFKUaBVN6ANoFkdAgdfCxmkFfXV9lChoBmgJaA9DCMb3xaUqLGJAlIaUUpRoFU3oA2gWR0CB2MtXgccVdX2UKGgGaAloD0MI+7FJfsTVY0CUhpRSlGgVTegDaBZHQIHmQlQdjoZ1fZQoaAZoCWgPQwgQPpRoyfM4wJSGlFKUaBVNTgFoFkdAggk7/GVAzHV9lChoBmgJaA9DCIz34/bL22FAlIaUUpRoFU3oA2gWR0CCEjqZ+hGpdX2UKGgGaAloD0MIysUYWEfxY0CUhpRSlGgVTegDaBZHQIIZ/6/IsAh1fZQoaAZoCWgPQwhDccebfM1hQJSGlFKUaBVN6ANoFkdAgh4mmLtNSXV9lChoBmgJaA9DCKBQTx8B+mFAlIaUUpRoFU3oA2gWR0CCHu5e7cwhdX2UKGgGaAloD0MI34yar5KXLkCUhpRSlGgVS95oFkdAgi1SCe2/jHV9lChoBmgJaA9DCK4upwTEqGBAlIaUUpRoFU3oA2gWR0CCLk9DhLoPdX2UKGgGaAloD0MIBP9byY7JZECUhpRSlGgVTegDaBZHQIJAZjUd7v51fZQoaAZoCWgPQwjniedsAdRbQJSGlFKUaBVN6ANoFkdAgkDkeQuEmXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 128,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a0b3993db0bda2a83d321989727ea847ba3786a3d8a59c820ce4a49e9b274fc
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60e0131f50818bbf736d58157b2871cbd872fe7e587b912c62b1476fcf86d28
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (261 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 169.27108331608127, "std_reward": 65.95988969913847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-03T16:46:04.502632"}