apsora commited on
Commit
cf61c7b
·
verified ·
1 Parent(s): d323613

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -67
README.md CHANGED
@@ -1,71 +1,43 @@
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: distilbert-base-uncased
5
  tags:
6
- - generated_from_trainer
7
- metrics:
8
- - accuracy
9
- - f1
10
- - precision
11
- - recall
12
- model-index:
13
- - name: finetuning_text_model
14
- results: []
 
 
 
 
 
 
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
- # finetuning_text_model
21
-
22
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
23
- It achieves the following results on the evaluation set:
24
- - Loss: 0.0422
25
- - Accuracy: 1.0
26
- - F1: 1.0
27
- - Precision: 1.0
28
- - Recall: 1.0
29
-
30
- ## Model description
31
-
32
- More information needed
33
-
34
- ## Intended uses & limitations
35
-
36
- More information needed
37
-
38
- ## Training and evaluation data
39
-
40
- More information needed
41
-
42
- ## Training procedure
43
-
44
- ### Training hyperparameters
45
-
46
- The following hyperparameters were used during training:
47
- - learning_rate: 2e-05
48
- - train_batch_size: 8
49
- - eval_batch_size: 8
50
- - seed: 42
51
- - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
- - lr_scheduler_type: linear
53
- - num_epochs: 5
54
-
55
- ### Training results
56
-
57
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
- | 1.2278 | 1.0 | 84 | 1.0599 | 0.9048 | 0.9030 | 0.9148 | 0.9048 |
60
- | 0.509 | 2.0 | 168 | 0.3537 | 0.9821 | 0.9820 | 0.9829 | 0.9821 |
61
- | 0.1262 | 3.0 | 252 | 0.1090 | 0.9881 | 0.9881 | 0.9883 | 0.9881 |
62
- | 0.0686 | 4.0 | 336 | 0.0548 | 0.9940 | 0.9940 | 0.9943 | 0.9940 |
63
- | 0.0469 | 5.0 | 420 | 0.0482 | 0.9940 | 0.9940 | 0.9943 | 0.9940 |
64
-
65
-
66
- ### Framework versions
67
-
68
- - Transformers 4.56.1
69
- - Pytorch 2.8.0+cu126
70
- - Datasets 4.0.0
71
- - Tokenizers 0.22.0
 
1
  ---
2
+ language:
3
+ - en
4
+ license: other
5
  tags:
6
+ - text
7
+ - youtube
8
+ - comments
9
+ - music
10
+ - text-classification
11
+ annotations_creators:
12
+ - human-annotated
13
+ - machine-generated
14
+ language_creators:
15
+ - found
16
+ pretty_name: YouTube Music Comments (Original & Augmented)
17
+ task_categories:
18
+ - text-classification
19
+ task_ids:
20
+ - multi-class-classification
21
  ---
22
 
23
+ # YouTube Music Comments (Original & Augmented)
24
+
25
+ **Summary:** User comments from YouTube music videos labeled with one of 7 genres
26
+ (`pop`, `Jazz`, `rock`, `electronic`, `R&B`, `Metal`, `Classical`). Two splits are provided:
27
+ `original` (human-labeled) and `augmented` (synthetic additions), both with columns:
28
+ - `text` (string)
29
+ - `label` (string)
30
+
31
+ ## Load
32
+ ```python
33
+ from datasets import load_dataset
34
+ ds = load_dataset("Iris314/Youtube_music_comments")
35
+ original = ds["original"]
36
+ augmented = ds["augmented"]
37
+
38
+ @misc{youtube_music_comments_2025,
39
+ title = {YouTube Music Comments (Original & Augmented)},
40
+ author = {Iris314},
41
+ year = {2025},
42
+ howpublished = {\url{https://huggingface.co/datasets/Iris314/Youtube_music_comments}}
43
+ }