appleeji's picture
Upload main.py with huggingface_hub
1b8d732 verified
import argparse
import deepspeed
parser = argparse.ArgumentParser(description='sp')
parser.add_argument('--basepath', type=str, default='/home/lyh/weights/hf/llama31chat/8B/')
parser.add_argument('--trainpath', type=str,
default="/home/lyh/code/nlp/developing/vllmbase/vllm/gedata/l318b.jsonl")
parser.add_argument('--testpath', type=str,
default="/home/lyh/code/nlp/developing/vllmbase/vllm/gedata/0318.json")
parser.add_argument('--savedir', type=str, default='0')
parser.add_argument('--model_type', type=str, default='llama', choices=['llama', 'qwen3'],
help="Model architecture type: 'llama' or 'qwen3'")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
import json
import re
deepspeed_config = args.deepspeed_config
with open(deepspeed_config) as f:
ds_config = json.load(f)
# [MODIFIED] Select config path based on model_type
config_path_map = {
'llama': 'config.json',
'qwen3': 'config_qwen3.json'
}
config_path = config_path_map.get(args.model_type, 'config.json')
train_config = {
"bs": ds_config["train_micro_batch_size_per_gpu"],
"num_epochs": 15,
"num_workers": 16,
"max_len": 1536,
"config_path": config_path,
"gradient_checkpointing": False
}
from safetensors import safe_open
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
import torch
from cnets import padding
torch.backends.cuda.matmul.allow_tf32 = True
from accelerate.utils import set_seed
set_seed(0)
from cnets import Model
from configs import EConfig
from datasets import load_dataset
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader, DistributedSampler
from tqdm import tqdm
# import accelerate
import numpy as np
from transformers import PreTrainedTokenizerBase, get_linear_schedule_with_warmup
def build_dataset_rank(
tokenizer, datapath, model_type='llama'
):
ds = load_dataset('json', data_files=datapath)
ds = ds['train']
ds = ds.shuffle(seed=42)
ds1 = ds
original_columns1 = ds1.column_names
num_proc = 1 # Changed from 8 to avoid DeepSpeed pickle issues
# [MODIFIED] Auto-detect chat format from conversation string
# Will be set dynamically in preprocess_function based on actual format
def preprocess_function(examples):
new_examples = {
"attention_mask": [],
"input_ids": [],
"loss_mask": []
}
for i in range(len(examples['id'])):
messages = [
{"role": "system",
"content": "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."},
]
convroles = ["user", "assistant"]
roles = {"human": "user", "gpt": "assistant"}
source = examples['conversations'][i]
if not source:
continue
if roles[source[0]["from"]] != "user":
# Skip the first one if it is not from human
source = source[1:]
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == convroles[j % 2], f"{i}"
# if sentence["from"]=="gpt":
# sentence["value"]=" "+sentence["value"]
messages.append(
{"role": role, "content": sentence["value"]}
)
# Try to use tokenizer's chat template, fallback to manual ChatML formatting
try:
conversation = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False,
)
except (ValueError, AttributeError):
# Manually format as ChatML (used by Qwen and many others)
conversation = ""
for msg in messages:
role = msg["role"]
content = msg["content"]
conversation += f"<|im_start|>{role}\n{content}<|im_end|>\n"
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.unk_token_id
input_ids = tokenizer(
conversation,
return_tensors="pt",
add_special_tokens=False,
).input_ids[0]
# filtering out the samples which is longer than max_len
if len(input_ids) > train_config["max_len"]:
continue
loss_mask = torch.ones_like(input_ids)
# print(i)
total_len = len(input_ids)
# Auto-detect format and set separators
if "<|im_start|>" in conversation and "<|im_end|>" in conversation:
# ChatML format (Qwen, default fallback)
sep = "<|im_end|>\n<|im_start|>assistant\n"
sep2 = "<|im_end|>\n<|im_start|>user\n"
elif "<|eot_id|>" in conversation:
# LLaMA-3 format
sep = "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
sep2 = "<|eot_id|><|start_header_id|>user<|end_header_id|>"
else:
# Unknown format, skip this sample
continue
turns = conversation.split(sep2)
# [MODIFIED] Skip samples with invalid conversation structure
if len(turns) < 2:
continue
turns[1] = turns[0] + sep2 + turns[1]
turns = turns[1:]
cur_len = 1
loss_mask[:cur_len] = 0
for i, turn in enumerate(turns):
if turn == "":
break
turn_len = len(tokenizer(turn).input_ids)
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
# Ignore the user instructions
if i == 0:
loss_mask[cur_len: cur_len + instruction_len - 2] = 0
else:
loss_mask[cur_len - 3: cur_len + instruction_len + 1] = 0
cur_len += turn_len
if i != 0:
cur_len += 3
# cur_len+=2
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# cur_len -= 1
loss_mask[cur_len:] = 0
attention_mask = torch.ones_like(loss_mask)
# new_examples["conversation"].append(conversation)
new_examples["input_ids"].append(input_ids[None, :])
new_examples["loss_mask"].append(loss_mask[None, :])
new_examples["attention_mask"].append(attention_mask[None, :])
return new_examples
ds1 = ds1.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns1,
load_from_cache_file=False
)
ds1.set_format(type="torch")
return ds1
class DataCollatorWithPadding:
def paddingtensor(self, intensors, N):
B, n, S = intensors.shape
# padding_tensor = torch.zeros(B, N - n, S,dtype=intensors.dtype)
padding_tensor = torch.zeros(B, N - n, S, dtype=intensors.dtype)
outtensors = torch.cat((intensors, padding_tensor), dim=1)
return outtensors
def paddingtensor2D(self, intensors, N):
B, n = intensors.shape
padding_tensor = torch.zeros(B, N - n, dtype=intensors.dtype)
outtensors = torch.cat((intensors, padding_tensor), dim=1)
return outtensors
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
max_length = max(item['input_ids'].shape[1] for item in features)
batch_input_ids = torch.cat([self.paddingtensor2D(item['input_ids'], max_length) for item in features])
batch_attention_mask = torch.cat(
[self.paddingtensor2D(item['attention_mask'], max_length) for item in features])
batch_loss_mask = torch.cat(
[self.paddingtensor2D(item['loss_mask'], max_length) for item in features])
batch = {
"input_ids": batch_input_ids,
"attention_mask": batch_attention_mask,
"loss_mask": batch_loss_mask,
}
return batch
tokenizer = AutoTokenizer.from_pretrained(args.basepath)
# [MODIFIED] Pass model_type to build_dataset_rank
traindataset = build_dataset_rank(tokenizer, args.trainpath, model_type=args.model_type)
testdataset = build_dataset_rank(tokenizer, args.testpath, model_type=args.model_type)
config = EConfig.from_pretrained(train_config["config_path"])
# [MODIFIED] Pass model_type to Model
model = Model(config, ds_config, train_config, path=args.basepath, load_emb=True, load_head=True, model_type=args.model_type)
model.scandata(args.trainpath, args.basepath)
criterion = nn.SmoothL1Loss(reduction="none")
num_epochs = train_config["num_epochs"]
# Only pass trainable parameters to DeepSpeed (frozen params cause grad tracking errors)
trainable_params = [p for p in model.parameters() if p.requires_grad]
model_engine, optimizer, _, _ = deepspeed.initialize(args=args,
model=model,
model_parameters=trainable_params,
)
global_rank = deepspeed.comm.get_rank()
rank = deepspeed.comm.get_local_rank()
world_size = deepspeed.comm.get_world_size()
if global_rank == 0:
import wandb
wandb.login(key="dcac9b6b99c4203de2a920453357bc8ed55a5baf")
wandb.init(project="qwen3", entity="model-acceleration", config=ds_config)
os.makedirs(args.savedir, exist_ok=True)
sampler = DistributedSampler(testdataset, num_replicas=world_size, rank=global_rank, shuffle=False)
test_loader = DataLoader(testdataset, batch_size=train_config["bs"], sampler=sampler, num_workers=0, pin_memory=True,
collate_fn=DataCollatorWithPadding())
train_sampler = DistributedSampler(traindataset, num_replicas=world_size, rank=global_rank, shuffle=True)
train_loader = DataLoader(traindataset, batch_size=train_config["bs"], sampler=train_sampler, num_workers=0,
pin_memory=True,
collate_fn=DataCollatorWithPadding())
def find_max_state_with_file(directory, filename="zero_to_fp32.py"):
max_a = -1
for subdir in os.listdir(directory):
match = re.match(r"state_(\d+)", subdir)
if match:
a_value = int(match.group(1))
subdir_path = os.path.join(directory, subdir)
file_path = os.path.join(subdir_path, filename)
if os.path.isdir(subdir_path) and os.path.exists(file_path):
max_a = max(max_a, a_value)
if max_a == -1:
return None, 0
return f"{directory}/state_{max_a}", max_a + 1
checkpoint_path, start_epoch = find_max_state_with_file(args.savedir)
if checkpoint_path:
print(f"load from {checkpoint_path}")
model_engine.load_checkpoint(checkpoint_path)
for epoch in range(start_epoch, num_epochs):
train_sampler.set_epoch(epoch+1)
print(f"Now training epoch {epoch}")
model.train()
epoch_acces = [[] for _ in range(model.length)]
epoch_plosses = [[] for _ in range(model.length)]
for batch_idx, data in enumerate(tqdm(train_loader)):
model.zero_grad()
plosses, vlosses, acces = model_engine(input_ids=data["input_ids"].to(rank),
attention_mask=data["attention_mask"].to(rank),
loss_mask=data["loss_mask"],
)
ploss_weight = [0.8 ** i for i in range(len(plosses))]
ploss = sum([ploss_weight[i] * plosses[i] for i in range(len(plosses))])
loss = ploss
model_engine.backward(loss)
model_engine.step()
if global_rank == 0:
logdict = {"train/lr": optimizer.optimizer.param_groups[0]["lr"]}
for i in range(len(plosses)):
logdict[f"train/ploss_{i}"] = plosses[i].item()
for i in range(len(acces)):
logdict[f"train/acc_{i}"] = acces[i]
wandb.log(logdict)
epoch_acces = [epoch_acces[i] + [acces[i]] for i in range(len(acces))]
epoch_plosses = [epoch_plosses[i] + [plosses[i].item()] for i in range(len(plosses))]
for i in range(len(epoch_acces)):
acc_i = torch.tensor(epoch_acces[i]).cuda().mean()
deepspeed.comm.all_reduce(acc_i, op=deepspeed.comm.ReduceOp.AVG)
acc_i = acc_i.item()
if global_rank == 0:
wandb.log({f"train/epochacc_{i}": acc_i})
print(f"Train Epoch [{epoch + 1}/{num_epochs}], position {i}, Acc: {acc_i:.2f}")
for i in range(len(epoch_plosses)):
loss_i = torch.tensor(epoch_plosses[i]).cuda().mean()
deepspeed.comm.all_reduce(loss_i, op=deepspeed.comm.ReduceOp.AVG)
loss_i = loss_i.item()
if global_rank == 0:
wandb.log({f"train/epochploss_{i}": loss_i})
print(f"Train Epoch [{epoch + 1}/{num_epochs}], position {i}, pLoss: {loss_i:.2f}")
epoch_acces = [[] for _ in range(model.length)]
epoch_plosses = [[] for _ in range(model.length)]
for batch_idx, data in enumerate(tqdm(test_loader)):
with torch.no_grad():
plosses, vlosses, acces = model_engine(input_ids=data["input_ids"].to(rank),
attention_mask=data["attention_mask"].to(rank),
loss_mask=data["loss_mask"],
)
epoch_acces = [epoch_acces[i] + [acces[i]] for i in range(len(acces))]
epoch_plosses = [epoch_plosses[i] + [plosses[i].item()] for i in range(len(plosses))]
for i in range(len(epoch_acces)):
acc_i = torch.tensor(epoch_acces[i]).cuda().mean()
deepspeed.comm.all_reduce(acc_i, op=deepspeed.comm.ReduceOp.AVG)
acc_i = acc_i.item()
if global_rank == 0:
wandb.log({f"test/epochacc_{i}": acc_i})
print(f"Test Epoch [{epoch + 1}/{num_epochs}], position {i}, Acc: {acc_i:.2f}")
for i in range(len(epoch_plosses)):
loss_i = torch.tensor(epoch_plosses[i]).cuda().mean()
deepspeed.comm.all_reduce(loss_i, op=deepspeed.comm.ReduceOp.AVG)
loss_i = loss_i.item()
if global_rank == 0:
wandb.log({f"test/epochploss_{i}": loss_i})
print(f"Test Epoch [{epoch + 1}/{num_epochs}], position {i}, pLoss: {loss_i:.2f}")
# clear out the redundance cahce after each step
torch.cuda.empty_cache()
# 매 epoch마다 체크포인트 저장 (학습 재개 가능하도록)
model_engine.save_16bit_model(f"{args.savedir}/state_{epoch}", exclude_frozen_parameters=True)
deepspeed.DeepSpeedEngine.save_checkpoint(model_engine, save_dir=f"{args.savedir}/state_{epoch}")
# 디스크 공간 절약: 오래된 체크포인트 삭제 (최근 3개만 유지)
if global_rank == 0 and epoch > 2:
old_checkpoint = f"{args.savedir}/state_{epoch - 3}"
if os.path.exists(old_checkpoint):
import shutil
shutil.rmtree(old_checkpoint)
print(f"Removed old checkpoint: {old_checkpoint}")