The tokenizer is not custom
Browse filesThis removes the `trust_remote_code=True` argument from the `AutoTokenizer.from_pretrained` call which shouldn't be necessary since the tokenizer is not a custom one (there is no custom code for it in the repo).
README.md
CHANGED
@@ -11,8 +11,6 @@ This is the [distilbert-base-uncased-finetuned-sst-2-english](https://huggingfac
|
|
11 |
|
12 |
The source code is taken from Apple's [ml-ane-transformers](https://github.com/apple/ml-ane-transformers) GitHub repo, modified slightly to make it usable from the 🤗 Transformers library.
|
13 |
|
14 |
-
For more details about DistilBERT, we encourage users to check out [this model card](https://huggingface.co/distilbert-base-uncased).
|
15 |
-
|
16 |
## How to use
|
17 |
|
18 |
Usage example:
|
@@ -22,7 +20,7 @@ import torch
|
|
22 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
23 |
|
24 |
model_checkpoint = "apple/ane-distilbert-base-uncased-finetuned-sst-2-english"
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint
|
26 |
model = AutoModelForSequenceClassification.from_pretrained(
|
27 |
model_checkpoint, trust_remote_code=True, return_dict=False,
|
28 |
)
|
|
|
11 |
|
12 |
The source code is taken from Apple's [ml-ane-transformers](https://github.com/apple/ml-ane-transformers) GitHub repo, modified slightly to make it usable from the 🤗 Transformers library.
|
13 |
|
|
|
|
|
14 |
## How to use
|
15 |
|
16 |
Usage example:
|
|
|
20 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
21 |
|
22 |
model_checkpoint = "apple/ane-distilbert-base-uncased-finetuned-sst-2-english"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
24 |
model = AutoModelForSequenceClassification.from_pretrained(
|
25 |
model_checkpoint, trust_remote_code=True, return_dict=False,
|
26 |
)
|