mobileclip
pcuenq HF staff commited on
Commit
782103d
1 Parent(s): 11f247d

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. LICENSE +46 -0
  2. README.md +65 -0
  3. config.json +18 -0
  4. fig_accuracy_latency.png +0 -0
  5. mobileclip_blt.pt +3 -0
LICENSE ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (C) 2024 Apple Inc. All Rights Reserved.
2
+
3
+ IMPORTANT: This Apple software is supplied to you by Apple
4
+ Inc. ("Apple") in consideration of your agreement to the following
5
+ terms, and your use, installation, modification or redistribution of
6
+ this Apple software constitutes acceptance of these terms. If you do
7
+ not agree with these terms, please do not use, install, modify or
8
+ redistribute this Apple software.
9
+
10
+ In consideration of your agreement to abide by the following terms, and
11
+ subject to these terms, Apple grants you a personal, non-exclusive
12
+ license, under Apple's copyrights in this original Apple software (the
13
+ "Apple Software"), to use, reproduce, modify and redistribute the Apple
14
+ Software, with or without modifications, in source and/or binary forms;
15
+ provided that if you redistribute the Apple Software in its entirety and
16
+ without modifications, you must retain this notice and the following
17
+ text and disclaimers in all such redistributions of the Apple Software.
18
+ Neither the name, trademarks, service marks or logos of Apple Inc. may
19
+ be used to endorse or promote products derived from the Apple Software
20
+ without specific prior written permission from Apple. Except as
21
+ expressly stated in this notice, no other rights or licenses, express or
22
+ implied, are granted by Apple herein, including but not limited to any
23
+ patent rights that may be infringed by your derivative works or by other
24
+ works in which the Apple Software may be incorporated.
25
+
26
+ The Apple Software is provided by Apple on an "AS IS" basis. APPLE
27
+ MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
28
+ THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS
29
+ FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND
30
+ OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
31
+
32
+ IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL
33
+ OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35
+ INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION,
36
+ MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED
37
+ AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE),
38
+ STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE
39
+ POSSIBILITY OF SUCH DAMAGE.
40
+
41
+ -------------------------------------------------------------------------------
42
+ SOFTWARE DISTRIBUTED WITH ML-MobileCLIP:
43
+
44
+ The ML-MobileCLIP software includes a number of subcomponents with separate
45
+ copyright notices and license terms - please see the file ACKNOWLEDGEMENTS.
46
+ -------------------------------------------------------------------------------
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: apple-ascl
4
+ license_link: LICENSE
5
+ library_name: mobileclip
6
+ ---
7
+
8
+ # MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
9
+
10
+ MobileCLIP was introduced in [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
11
+ ](https://arxiv.org/pdf/2311.17049.pdf) (CVPR 2024), by Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel.
12
+
13
+ This repository contains the **MobileCLIP-B (LT)** checkpoint.
14
+
15
+ ![MobileCLIP Performance Figure](fig_accuracy_latency.png)
16
+
17
+ ### Highlights
18
+
19
+ * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller.
20
+ * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples.
21
+ * `MobileCLIP-B`(LT) attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020).
22
+
23
+ ## Checkpoints
24
+
25
+ | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets |
26
+ |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:|
27
+ | [MobileCLIP-S0](https://hf.co/pcuenq/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 |
28
+ | [MobileCLIP-S1](https://hf.co/pcuenq/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 |
29
+ | [MobileCLIP-S2](https://hf.co/pcuenq/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 |
30
+ | [MobileCLIP-B](https://hf.co/pcuenq/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 |
31
+ | [MobileCLIP-B (LT)](https://hf.co/pcuenq/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 |
32
+
33
+ ## How to Use
34
+
35
+ First, download the desired checkpoint visiting one of the links in the table above, then click the `Files and versions` tab, and download the PyTorch checkpoint.
36
+ For programmatic downloading, if you have `huggingface_hub` installed, you can also run:
37
+
38
+ ```
39
+ huggingface-cli download pcuenq/MobileCLIP-B-LT
40
+ ```
41
+
42
+ Then, install [`ml-mobileclip`](https://github.com/apple/ml-mobileclip) by following the instructions in the repo. It uses an API similar to [`open_clip`'s](https://github.com/mlfoundations/open_clip).
43
+ You can run inference with a code snippet like the following:
44
+
45
+ ```py
46
+ import torch
47
+ from PIL import Image
48
+ import mobileclip
49
+
50
+ model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_blt', pretrained='/path/to/mobileclip_blt.pt')
51
+ tokenizer = mobileclip.get_tokenizer('mobileclip_blt')
52
+
53
+ image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
54
+ text = tokenizer(["a diagram", "a dog", "a cat"])
55
+
56
+ with torch.no_grad(), torch.cuda.amp.autocast():
57
+ image_features = model.encode_image(image)
58
+ text_features = model.encode_text(text)
59
+ image_features /= image_features.norm(dim=-1, keepdim=True)
60
+ text_features /= text_features.norm(dim=-1, keepdim=True)
61
+
62
+ text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
63
+
64
+ print("Label probs:", text_probs)
65
+ ```
config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "image_cfg": {
4
+ "image_size": 224,
5
+ "model_name": "vit_b16"
6
+ },
7
+ "text_cfg": {
8
+ "context_length": 77,
9
+ "vocab_size": 49408,
10
+ "dim": 512,
11
+ "ffn_multiplier_per_layer": 4.0,
12
+ "n_heads_per_layer": 8,
13
+ "n_transformer_layers": 12,
14
+ "norm_layer": "layer_norm_fp32",
15
+ "causal_masking": true,
16
+ "model_name": "base"
17
+ }
18
+ }
fig_accuracy_latency.png ADDED
mobileclip_blt.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:670844f7a886dd6eff7a9285adfc53f3d3c889c03bfc8354010cb5c6bf27441a
3
+ size 599214572