Depth Estimation
Depth Pro
pcuenq HF staff commited on
Commit
c9e4772
1 Parent(s): b14940d

Depth Pro checkpoint

Browse files
Files changed (2) hide show
  1. README.md +85 -0
  2. depth_pro.pt +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apple-ascl
3
+ ---
4
+
5
+ # Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
6
+
7
+ ![Depth Pro Demo Image](https://github.com/apple/ml-depth-pro/raw/main/data/depth-pro-teaser.jpg)
8
+
9
+ We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image.
10
+
11
+ Depth Pro was introduced in **Depth Pro: Sharp Monocular Metric Depth in Less Than a Second**, by *Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*.
12
+
13
+ The checkpoint in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly.
14
+
15
+ ## How to Use
16
+
17
+ Please, follow the steps in the [code repository](https://github.com/apple/ml-depth-pro) to set up your environment. Then you can download the checkpoint from the _Files and versions_ tab above, or use the `huggingface-hub` CLI:
18
+
19
+ ```bash
20
+ pip install huggingface-hub
21
+ huggingface-cli download --local-dir checkpoints pcuenq/Depth-Pro
22
+ ```
23
+
24
+ ### Running from commandline
25
+
26
+ The code repo provides a helper script to run the model on a single image:
27
+
28
+ ```bash
29
+ # Run prediction on a single image:
30
+ depth-pro-run -i ./data/example.jpg
31
+ # Run `depth-pro-run -h` for available options.
32
+ ```
33
+
34
+ ### Running from Python
35
+
36
+ ```python
37
+ from PIL import Image
38
+ import depth_pro
39
+
40
+ # Load model and preprocessing transform
41
+ model, transform = depth_pro.create_model_and_transforms()
42
+ model.eval()
43
+
44
+ # Load and preprocess an image.
45
+ image, _, f_px = depth_pro.load_rgb(image_path)
46
+ image = transform(image)
47
+
48
+ # Run inference.
49
+ prediction = model.infer(image, f_px=f_px)
50
+ depth = prediction["depth"] # Depth in [m].
51
+ focallength_px = prediction["focallength_px"] # Focal length in pixels.
52
+ ```
53
+
54
+ ### Evaluation (boundary metrics)
55
+
56
+ Boundary metrics are implemented in `eval/boundary_metrics.py` and can be used as follows:
57
+
58
+ ```python
59
+ # for a depth-based dataset
60
+ boundary_f1 = SI_boundary_F1(predicted_depth, target_depth)
61
+
62
+ # for a mask-based dataset (image matting / segmentation)
63
+ boundary_recall = SI_boundary_Recall(predicted_depth, target_mask)
64
+ ```
65
+
66
+
67
+ ## Citation
68
+
69
+ If you find our work useful, please cite the following paper:
70
+
71
+ ```bibtex
72
+ @article{Bochkovskii2024:arxiv,
73
+ author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
74
+ Yichao Zhou and Stephan R. Richter and Vladlen Koltun}
75
+ title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
76
+ journal = {arXiv},
77
+ year = {2024},
78
+ }
79
+ ```
80
+
81
+ ## Acknowledgements
82
+
83
+ Our codebase is built using multiple opensource contributions, please see [Acknowledgements](https://github.com/apple/ml-depth-pro/blob/main/ACKNOWLEDGEMENTS.md) for more details.
84
+
85
+ Please check the paper for a complete list of references and datasets used in this work.
depth_pro.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eb35ca68168ad3d14cb150f8947a4edf85589941661fdb2686259c80685c0ce
3
+ size 1904446787