apparition commited on
Commit
ff3cba7
·
1 Parent(s): 7a2563c

retrained model

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -4.98 +/- 1.60
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.01 +/- 0.63
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:762820f02b877459e709e850b8a4f99bd74dcd749a2598c7952544bf1bb0bad5
3
  size 108028
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e32a0f9ace70c755e32570519c48f43d3ec5bb82bb33b5d8d0b4d8afe2a6069a
3
  size 108028
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f28b312a9d0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f28b312f600>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1200000,
45
- "_total_timesteps": 1200000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1679237245982458011,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARfrwPmfjIb14FBw/RfrwPmfjIb14FBw/RfrwPmfjIb14FBw/RfrwPmfjIb14FBw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGAjZPlHRiz8f2Iw/+4ASv/Dcszwbrcs+8oASv7+ze7/BQwK/+Y1yP4ER9b3ghR0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]]",
60
- "desired_goal": "[[ 0.42388988 1.0923253 1.1003455 ]\n [-0.5722806 0.02195594 0.39780506]\n [-0.57228005 -0.98321146 -0.50884634]\n [ 0.94747883 -0.11966229 0.615324 ]]",
61
- "observation": "[[ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACjf7PebzIb3C2EU+Jk3RPCV2C73Tk3g+iLqqvSbpIL1wtIE+SACtPIlb7b1XNpQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.12266357 -0.03953924 0.19320968]\n [ 0.02554948 -0.03404822 0.2427514 ]\n [-0.08336359 -0.03928485 0.25332975]\n [ 0.0211183 -0.11589725 0.28947708]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIguZz7nZ9CMCUhpRSlIwBbJRLMowBdJRHQK47jMYdhiN1fZQoaAZoCWgPQwg/yLJg4n8QwJSGlFKUaBVLMmgWR0CuOzgIyCWedX2UKGgGaAloD0MI3eo56X3DGcCUhpRSlGgVSzJoFkdArjrg/9pAU3V9lChoBmgJaA9DCM4AF2TLMhHAlIaUUpRoFUsyaBZHQK46hOkcjqx1fZQoaAZoCWgPQwg2OuenOD4TwJSGlFKUaBVLMmgWR0CuPJPpyIYWdX2UKGgGaAloD0MIq+tQTUnWBcCUhpRSlGgVSzJoFkdArjw+gBcRlHV9lChoBmgJaA9DCAIpsWt7ixfAlIaUUpRoFUsyaBZHQK475uAqd6N1fZQoaAZoCWgPQwjbiCe7mfECwJSGlFKUaBVLMmgWR0CuO4vE0iyIdX2UKGgGaAloD0MIhQX3Ax4oGMCUhpRSlGgVSzJoFkdArj2kqz7di3V9lChoBmgJaA9DCGcsms5OBh7AlIaUUpRoFUsyaBZHQK49T0hePaN1fZQoaAZoCWgPQwgIWoEhq9scwJSGlFKUaBVLMmgWR0CuPPcohIOIdX2UKGgGaAloD0MIodl1b0VyEsCUhpRSlGgVSzJoFkdArjybCHh0hnV9lChoBmgJaA9DCNV6v9GOKxPAlIaUUpRoFUsyaBZHQK4+qkcCHRF1fZQoaAZoCWgPQwgOFHgnn44XwJSGlFKUaBVLMmgWR0CuPlTrE9+xdX2UKGgGaAloD0MIchjMXyHDEsCUhpRSlGgVSzJoFkdArj39ZNfw7XV9lChoBmgJaA9DCNwqiIGuvQzAlIaUUpRoFUsyaBZHQK49oUVSGah1fZQoaAZoCWgPQwiNX3glyaMVwJSGlFKUaBVLMmgWR0CuP9rgflp5dX2UKGgGaAloD0MIL6aZ7nXSG8CUhpRSlGgVSzJoFkdArj+F58jRlnV9lChoBmgJaA9DCI83+S06WQzAlIaUUpRoFUsyaBZHQK4/LiNKh+R1fZQoaAZoCWgPQwgVi98UVpoWwJSGlFKUaBVLMmgWR0CuPtK1gH/tdX2UKGgGaAloD0MIFm2Oc5tQFsCUhpRSlGgVSzJoFkdArkDswco6S3V9lChoBmgJaA9DCL8OnDOidA/AlIaUUpRoFUsyaBZHQK5Al3rUsnR1fZQoaAZoCWgPQwjFHtrHCi4SwJSGlFKUaBVLMmgWR0CuQD/Dcdo4dX2UKGgGaAloD0MIZVHYRdETHMCUhpRSlGgVSzJoFkdArj/jor4FinV9lChoBmgJaA9DCGh6ibFMvw/AlIaUUpRoFUsyaBZHQK5CHPBSDRN1fZQoaAZoCWgPQwhCCMiXUKERwJSGlFKUaBVLMmgWR0CuQcePJaJRdX2UKGgGaAloD0MIySB3EabIAMCUhpRSlGgVSzJoFkdArkFwKx9oe3V9lChoBmgJaA9DCAA3ixcLExPAlIaUUpRoFUsyaBZHQK5BFJDE3sJ1fZQoaAZoCWgPQwgHmWTkLIwOwJSGlFKUaBVLMmgWR0CuQxu4oZyddX2UKGgGaAloD0MI+DQnLzLBGMCUhpRSlGgVSzJoFkdArkLG23KB/nV9lChoBmgJaA9DCL6FdePd4SLAlIaUUpRoFUsyaBZHQK5CbxyXD3x1fZQoaAZoCWgPQwj18dB3t9IFwJSGlFKUaBVLMmgWR0CuQhNTLns+dX2UKGgGaAloD0MIFviKbr0WGcCUhpRSlGgVSzJoFkdArkQJAD7qIXV9lChoBmgJaA9DCLLzNjY74hjAlIaUUpRoFUsyaBZHQK5DtIS13MZ1fZQoaAZoCWgPQwjn/X+cMDEawJSGlFKUaBVLMmgWR0CuQ1ySNfgKdX2UKGgGaAloD0MIdcsO8Q9bEcCUhpRSlGgVSzJoFkdArkMAeT3Zf3V9lChoBmgJaA9DCPtXVpqU4gzAlIaUUpRoFUsyaBZHQK5FFW1+iJx1fZQoaAZoCWgPQwgw2A3bFsUNwJSGlFKUaBVLMmgWR0CuRMAZbY9QdX2UKGgGaAloD0MIkx6GVicXE8CUhpRSlGgVSzJoFkdArkRn5HmRvHV9lChoBmgJaA9DCNxJRPgXQQ/AlIaUUpRoFUsyaBZHQK5EDAOavzR1fZQoaAZoCWgPQwhuh4bFqAsKwJSGlFKUaBVLMmgWR0CuRjUxVQyidX2UKGgGaAloD0MI3c6+8iAdDcCUhpRSlGgVSzJoFkdArkXgOH31z3V9lChoBmgJaA9DCGw+rg0VAwnAlIaUUpRoFUsyaBZHQK5FiACnxax1fZQoaAZoCWgPQwihSPdzCoogwJSGlFKUaBVLMmgWR0CuRSxX4j8ldX2UKGgGaAloD0MIGt8Xl6rkE8CUhpRSlGgVSzJoFkdArkdN4NZvDXV9lChoBmgJaA9DCCeIug9AyhTAlIaUUpRoFUsyaBZHQK5G+Kohpxp1fZQoaAZoCWgPQwiazk4GR6kdwJSGlFKUaBVLMmgWR0CuRqGi5/b1dX2UKGgGaAloD0MI0Oy6tyKREsCUhpRSlGgVSzJoFkdArkZFe4TbnHV9lChoBmgJaA9DCDauf9dn/hDAlIaUUpRoFUsyaBZHQK5INAdn0051fZQoaAZoCWgPQwi3t1uSA1YMwJSGlFKUaBVLMmgWR0CuR96nJkoXdX2UKGgGaAloD0MInl4pyxDHE8CUhpRSlGgVSzJoFkdArkeGvZAY53V9lChoBmgJaA9DCOiFOxdGug3AlIaUUpRoFUsyaBZHQK5HKojOcDt1fZQoaAZoCWgPQwiJmX0eo3wSwJSGlFKUaBVLMmgWR0CuSSV5jYqYdX2UKGgGaAloD0MIfA3BcRm3GsCUhpRSlGgVSzJoFkdArkjQLPUrkXV9lChoBmgJaA9DCNGuQspPKhHAlIaUUpRoFUsyaBZHQK5IeCMglnh1fZQoaAZoCWgPQwibO/pfrkULwJSGlFKUaBVLMmgWR0CuSBwZGax5dX2UKGgGaAloD0MIr2Ab8WT3EcCUhpRSlGgVSzJoFkdArkohjvuw5nV9lChoBmgJaA9DCKHyr+WVSwnAlIaUUpRoFUsyaBZHQK5JzDaXa8J1fZQoaAZoCWgPQwhq9dVVgfoJwJSGlFKUaBVLMmgWR0CuSXQa72+PdX2UKGgGaAloD0MI4ng+A+q9HMCUhpRSlGgVSzJoFkdArkkX8TBZZHV9lChoBmgJaA9DCI6s/DIY4wrAlIaUUpRoFUsyaBZHQK5LDdi2Dxt1fZQoaAZoCWgPQwifru5YbDMZwJSGlFKUaBVLMmgWR0CuSrh99c8ldX2UKGgGaAloD0MIR1Z+GYzpIMCUhpRSlGgVSzJoFkdArkpgXoC+13V9lChoBmgJaA9DCHVWC+wxkRHAlIaUUpRoFUsyaBZHQK5KBDYywfR1fZQoaAZoCWgPQwie7dEb7uMSwJSGlFKUaBVLMmgWR0CuTBeFL39KdX2UKGgGaAloD0MIteGwNPBzEsCUhpRSlGgVSzJoFkdArkvCGQCCBnV9lChoBmgJaA9DCGXDmsqicBrAlIaUUpRoFUsyaBZHQK5LafYBeX11fZQoaAZoCWgPQwgb1lQWhV0cwJSGlFKUaBVLMmgWR0CuSw4xL0z1dX2UKGgGaAloD0MIxsN7DiyXG8CUhpRSlGgVSzJoFkdArk1BU5uIh3V9lChoBmgJaA9DCPbwZaIIKRHAlIaUUpRoFUsyaBZHQK5M6+t8uz11fZQoaAZoCWgPQwhWKT3TS2wMwJSGlFKUaBVLMmgWR0CuTJQ8fV7QdX2UKGgGaAloD0MIQtDRqpZUGcCUhpRSlGgVSzJoFkdArkw5B1LamHV9lChoBmgJaA9DCOEp5Eo9SxLAlIaUUpRoFUsyaBZHQK5OQ7T2FnJ1fZQoaAZoCWgPQwjnbWx2pPofwJSGlFKUaBVLMmgWR0CuTe7Kq4pddX2UKGgGaAloD0MInWSryykBGMCUhpRSlGgVSzJoFkdArk2XT3IuG3V9lChoBmgJaA9DCK0Tl+MVqBDAlIaUUpRoFUsyaBZHQK5NO0uUUwl1fZQoaAZoCWgPQwiiREseTwsZwJSGlFKUaBVLMmgWR0CuT00jTrmhdX2UKGgGaAloD0MISMDo8uaAE8CUhpRSlGgVSzJoFkdArk74gPmPo3V9lChoBmgJaA9DCPIolfCEfgnAlIaUUpRoFUsyaBZHQK5OoEkB0ZF1fZQoaAZoCWgPQwipFhHF5C0NwJSGlFKUaBVLMmgWR0CuTkQtJ4B4dX2UKGgGaAloD0MIfjfdskO8FsCUhpRSlGgVSzJoFkdArlDWb/ffoHV9lChoBmgJaA9DCJOpglFJ3RLAlIaUUpRoFUsyaBZHQK5Qgbp/wy91fZQoaAZoCWgPQwhsQ8U4f4MWwJSGlFKUaBVLMmgWR0CuUCscIZ62dX2UKGgGaAloD0MIxouFIXI6E8CUhpRSlGgVSzJoFkdArk/PhKlHjXV9lChoBmgJaA9DCP922a87TRTAlIaUUpRoFUsyaBZHQK5Sa+6iCat1fZQoaAZoCWgPQwgI5ujxe2shwJSGlFKUaBVLMmgWR0CuUhcZ9/jLdX2UKGgGaAloD0MIOGvwvipHFsCUhpRSlGgVSzJoFkdArlHAkE9t/HV9lChoBmgJaA9DCAQDCB9KtAvAlIaUUpRoFUsyaBZHQK5RZQVsUIt1fZQoaAZoCWgPQwivWpnwS20QwJSGlFKUaBVLMmgWR0CuU/8mrsBydX2UKGgGaAloD0MISdi3k4hwDMCUhpRSlGgVSzJoFkdArlOqaw2VFHV9lChoBmgJaA9DCI7r3/WZKyDAlIaUUpRoFUsyaBZHQK5TUxUNrj51fZQoaAZoCWgPQwjThy6ob+kbwJSGlFKUaBVLMmgWR0CuUveXAuZkdX2UKGgGaAloD0MIkGeXb31YBMCUhpRSlGgVSzJoFkdArlYljgAIY3V9lChoBmgJaA9DCJtWCoFcohnAlIaUUpRoFUsyaBZHQK5V0TC+De11fZQoaAZoCWgPQwi4QILix9gEwJSGlFKUaBVLMmgWR0CuVXr7fpEAdX2UKGgGaAloD0MIy6Kwi6JnD8CUhpRSlGgVSzJoFkdArlUgctGutHV9lChoBmgJaA9DCBFwCFVqVgrAlIaUUpRoFUsyaBZHQK5X1q5byH51fZQoaAZoCWgPQwggCmZMwRoMwJSGlFKUaBVLMmgWR0CuV4Ikqto0dX2UKGgGaAloD0MIpGyRtBudEcCUhpRSlGgVSzJoFkdArlcq3w1BMXV9lChoBmgJaA9DCGJqSx3klRTAlIaUUpRoFUsyaBZHQK5W0HbAUL51ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 60000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f211075bb80>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f211075c800>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1679406691011789410,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArAW7PtZng7t1bg8/rAW7PtZng7t1bg8/rAW7PtZng7t1bg8/rAW7PtZng7t1bg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7R2aP7b1bT9ZzvY9s8wPvj1YmD++AnS/canUP8/Gub+6+i4/DbQLvJE3pD6SA6W7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACsBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]]",
60
+ "desired_goal": "[[ 1.2040383 0.9295305 0.12051076]\n [-0.1404293 1.1901928 -0.95316684]\n [ 1.661421 -1.4513797 0.6835133 ]\n [-0.00852681 0.32073644 -0.00503583]]",
61
+ "observation": "[[ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxthJvfciqr0nRmU+Mi8Uvmc0vD3BLhE+Azigvbs4mr1t04k9e+4SvbU/ub3zEDw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.049279 -0.0830745 0.22390042]\n [-0.14471129 0.09189682 0.14177991]\n [-0.07823183 -0.07530352 0.06729779]\n [-0.03587196 -0.09045354 0.1836584 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqcAGM8gBsCUhpRSlIwBbJRLMowBdJRHQKccPkrf+CN1fZQoaAZoCWgPQwgDtK1mnbEUwJSGlFKUaBVLMmgWR0CnG+j0cwQEdX2UKGgGaAloD0MIOlyrPezlBcCUhpRSlGgVSzJoFkdApxuNI065oXV9lChoBmgJaA9DCApMp3UbdAfAlIaUUpRoFUsyaBZHQKcbOVafSQZ1fZQoaAZoCWgPQwiy1lBqL8IFwJSGlFKUaBVLMmgWR0CnHUMv7FbWdX2UKGgGaAloD0MISkONQpLZC8CUhpRSlGgVSzJoFkdApxztz6rNn3V9lChoBmgJaA9DCA6hSs0eaAXAlIaUUpRoFUsyaBZHQKcckgezUqh1fZQoaAZoCWgPQwiwcmiR7ZwDwJSGlFKUaBVLMmgWR0CnHD40Mw10dX2UKGgGaAloD0MITySYamYtBcCUhpRSlGgVSzJoFkdApx5ViMHbAXV9lChoBmgJaA9DCMuBHmrb0ArAlIaUUpRoFUsyaBZHQKceADklu3t1fZQoaAZoCWgPQwiOk8K8xzkKwJSGlFKUaBVLMmgWR0CnHaWJJoTPdX2UKGgGaAloD0MIvfxOkxkvFMCUhpRSlGgVSzJoFkdApx1SH6/IsHV9lChoBmgJaA9DCJj6eVOR6gPAlIaUUpRoFUsyaBZHQKcfXelbeM11fZQoaAZoCWgPQwiQMuIC0FgRwJSGlFKUaBVLMmgWR0CnHwh7/n4gdX2UKGgGaAloD0MIlN43vvYMAMCUhpRSlGgVSzJoFkdApx6sp/gBLnV9lChoBmgJaA9DCJXurrMhPwTAlIaUUpRoFUsyaBZHQKceWNvwVj91fZQoaAZoCWgPQwgRbjKqDIMDwJSGlFKUaBVLMmgWR0CnIHS6tknUdX2UKGgGaAloD0MIpU+r6A8tDcCUhpRSlGgVSzJoFkdApyAfS0BwM3V9lChoBmgJaA9DCDqvsUtUDwfAlIaUUpRoFUsyaBZHQKcfw6cRUWF1fZQoaAZoCWgPQwh6GFqdnCENwJSGlFKUaBVLMmgWR0CnH2/g75mAdX2UKGgGaAloD0MIAwmKH2MOA8CUhpRSlGgVSzJoFkdApyHrdN34bnV9lChoBmgJaA9DCAx1WOGWrwPAlIaUUpRoFUsyaBZHQKchlpcophF1fZQoaAZoCWgPQwgGSgosgCkMwJSGlFKUaBVLMmgWR0CnITtjCpFTdX2UKGgGaAloD0MIWHVWC+yRBMCUhpRSlGgVSzJoFkdApyDn9WIXTHV9lChoBmgJaA9DCFNcVfZd8RLAlIaUUpRoFUsyaBZHQKcjp8AJb+t1fZQoaAZoCWgPQwg1fXbAdWUJwJSGlFKUaBVLMmgWR0CnI1MAeaKDdX2UKGgGaAloD0MIuAGfH0aoAsCUhpRSlGgVSzJoFkdApyL4BRyfc3V9lChoBmgJaA9DCCHmkqrtpgXAlIaUUpRoFUsyaBZHQKcipQWvbGp1fZQoaAZoCWgPQwjjjGFO0CYKwJSGlFKUaBVLMmgWR0CnJWZsbedkdX2UKGgGaAloD0MIldQJaCLsA8CUhpRSlGgVSzJoFkdApyUR0IToMnV9lChoBmgJaA9DCATo9/2b9wLAlIaUUpRoFUsyaBZHQKcktxlQMx51fZQoaAZoCWgPQwg6OxkcJY8KwJSGlFKUaBVLMmgWR0CnJGRUFSsKdX2UKGgGaAloD0MIcalKW1zjAsCUhpRSlGgVSzJoFkdApyctgBtDUnV9lChoBmgJaA9DCPDeUWNCTAfAlIaUUpRoFUsyaBZHQKcm2QCCBf91fZQoaAZoCWgPQwijycUYWKcFwJSGlFKUaBVLMmgWR0CnJn4k3S8bdX2UKGgGaAloD0MIbVhTWRQWA8CUhpRSlGgVSzJoFkdApyYrRIBikXV9lChoBmgJaA9DCKSnyCHi5gPAlIaUUpRoFUsyaBZHQKco+EvkBCF1fZQoaAZoCWgPQwhQ/u4dNbYQwJSGlFKUaBVLMmgWR0CnKKOh0yP/dX2UKGgGaAloD0MIwXCuYYbmCMCUhpRSlGgVSzJoFkdApyhImmce83V9lChoBmgJaA9DCCdO7ncoygzAlIaUUpRoFUsyaBZHQKcn9YmsvIx1fZQoaAZoCWgPQwiOImsNpVYHwJSGlFKUaBVLMmgWR0CnKqe7L+xXdX2UKGgGaAloD0MI2zaMguAxDsCUhpRSlGgVSzJoFkdApypTBVMmGHV9lChoBmgJaA9DCHhjQWFQ5gTAlIaUUpRoFUsyaBZHQKcp+BbwBo51fZQoaAZoCWgPQwjniedsAcEEwJSGlFKUaBVLMmgWR0CnKaTV2A5JdX2UKGgGaAloD0MIh8Q9lj6UCcCUhpRSlGgVSzJoFkdApyvLpX6qKnV9lChoBmgJaA9DCNDv+zcvbg3AlIaUUpRoFUsyaBZHQKcrdiOvMbF1fZQoaAZoCWgPQwgipkQSvSwFwJSGlFKUaBVLMmgWR0CnKxpfQa73dX2UKGgGaAloD0MIm1d1Vgts/7+UhpRSlGgVSzJoFkdApyrGvdM0xnV9lChoBmgJaA9DCMFUM2spoADAlIaUUpRoFUsyaBZHQKcs0TrVvuR1fZQoaAZoCWgPQwghWcAEbh0PwJSGlFKUaBVLMmgWR0CnLHuRT0g9dX2UKGgGaAloD0MIWdqpudyABMCUhpRSlGgVSzJoFkdApywf9cbBGnV9lChoBmgJaA9DCGRbBpylRArAlIaUUpRoFUsyaBZHQKcrzC2MKkV1fZQoaAZoCWgPQwgHQNzVqwgBwJSGlFKUaBVLMmgWR0CnLdfmknCwdX2UKGgGaAloD0MIxciSOZZ3BMCUhpRSlGgVSzJoFkdApy2CZUkv9XV9lChoBmgJaA9DCNW0i2mmWwPAlIaUUpRoFUsyaBZHQKctJpfQa751fZQoaAZoCWgPQwj3r6w0KUUFwJSGlFKUaBVLMmgWR0CnLNK8lHBldX2UKGgGaAloD0MIucK7XMQ3BsCUhpRSlGgVSzJoFkdApy7chC+lCXV9lChoBmgJaA9DCDnSGRh5uQXAlIaUUpRoFUsyaBZHQKcuh2xIJ7d1fZQoaAZoCWgPQwjX+Ez2z9P/v5SGlFKUaBVLMmgWR0CnLiubiIcjdX2UKGgGaAloD0MIKPIk6ZpJAsCUhpRSlGgVSzJoFkdApy3Xnp0OmXV9lChoBmgJaA9DCAngZvFiAQTAlIaUUpRoFUsyaBZHQKcv7e5WilB1fZQoaAZoCWgPQwi4c2GkF9UKwJSGlFKUaBVLMmgWR0CnL5iNbTttdX2UKGgGaAloD0MInrex2ZEq+L+UhpRSlGgVSzJoFkdApy882DQJHHV9lChoBmgJaA9DCFPovMYuEQHAlIaUUpRoFUsyaBZHQKcu6SMcZLt1fZQoaAZoCWgPQwj+YUuPppoKwJSGlFKUaBVLMmgWR0CnMPdu5z5odX2UKGgGaAloD0MI1SDM7V6uEMCUhpRSlGgVSzJoFkdApzChyMkyDnV9lChoBmgJaA9DCLrcYKjDahPAlIaUUpRoFUsyaBZHQKcwRdCVryl1fZQoaAZoCWgPQwibHhSUolUIwJSGlFKUaBVLMmgWR0CnL/IddVvNdX2UKGgGaAloD0MIIXh8e9dABcCUhpRSlGgVSzJoFkdApzIB9XtBwHV9lChoBmgJaA9DCJ/L1CR4AwTAlIaUUpRoFUsyaBZHQKcxrERaouR1fZQoaAZoCWgPQwj2XRH8b4ULwJSGlFKUaBVLMmgWR0CnMVBtDUmVdX2UKGgGaAloD0MIEeD0Lt5vCMCUhpRSlGgVSzJoFkdApzD8snRb8nV9lChoBmgJaA9DCB6oUx7daAbAlIaUUpRoFUsyaBZHQKczDk+X7ch1fZQoaAZoCWgPQwgnhXmPM00FwJSGlFKUaBVLMmgWR0CnMrkfT1CgdX2UKGgGaAloD0MID4C4q1eRDcCUhpRSlGgVSzJoFkdApzJdeF+NLnV9lChoBmgJaA9DCLBUF/AyQwbAlIaUUpRoFUsyaBZHQKcyCb961LJ1fZQoaAZoCWgPQwjUDn9N1kgGwJSGlFKUaBVLMmgWR0CnNBoPK+zudX2UKGgGaAloD0MIl5F6T+VUEcCUhpRSlGgVSzJoFkdApzPEghbGFXV9lChoBmgJaA9DCKj+QSRDLg7AlIaUUpRoFUsyaBZHQKczaL3sXzl1fZQoaAZoCWgPQwg+IqZEEj0BwJSGlFKUaBVLMmgWR0CnMxT19ORDdX2UKGgGaAloD0MIOE2fHXD9BMCUhpRSlGgVSzJoFkdApzUr5CWu5nV9lChoBmgJaA9DCM1XycfukhHAlIaUUpRoFUsyaBZHQKc01mJ3xF11fZQoaAZoCWgPQwhsWikEcmkJwJSGlFKUaBVLMmgWR0CnNHqT8pCsdX2UKGgGaAloD0MICK7yBMJuAsCUhpRSlGgVSzJoFkdApzQm1WsBAHV9lChoBmgJaA9DCNGSx9PyQwLAlIaUUpRoFUsyaBZHQKc2Ni5NGmV1fZQoaAZoCWgPQwi2vkhoy7kEwJSGlFKUaBVLMmgWR0CnNeC17Y03dX2UKGgGaAloD0MIXhCRmnZRBcCUhpRSlGgVSzJoFkdApzWE2DQJHHV9lChoBmgJaA9DCMgJE0azkg/AlIaUUpRoFUsyaBZHQKc1MSYgJTl1fZQoaAZoCWgPQwj0bcFSXYARwJSGlFKUaBVLMmgWR0CnNzZbY9PldX2UKGgGaAloD0MIA3l2+dZHBMCUhpRSlGgVSzJoFkdApzbgmCyyEHV9lChoBmgJaA9DCGyU9ZuJiQfAlIaUUpRoFUsyaBZHQKc2hLM9r451fZQoaAZoCWgPQwicNXhflWsUwJSGlFKUaBVLMmgWR0CnNjC04R29dX2UKGgGaAloD0MI/wQXK2qQC8CUhpRSlGgVSzJoFkdApzg8f1YhdXV9lChoBmgJaA9DCEz8UdSZGxDAlIaUUpRoFUsyaBZHQKc35wG4ZuR1fZQoaAZoCWgPQwiMS1Xa4noBwJSGlFKUaBVLMmgWR0CnN4tQKrq/dX2UKGgGaAloD0MI8s8M4gN7BMCUhpRSlGgVSzJoFkdApzc3mzSkTHV9lChoBmgJaA9DCCkHswkwDAPAlIaUUpRoFUsyaBZHQKc5UK/Efkp1fZQoaAZoCWgPQwhBKzBkdcsDwJSGlFKUaBVLMmgWR0CnOPs5n13/dX2UKGgGaAloD0MIY7SOqiaoFMCUhpRSlGgVSzJoFkdApzifcBU70XV9lChoBmgJaA9DCMDqyJHOYAnAlIaUUpRoFUsyaBZHQKc4S7iADq51ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:19a350cebd5bf39a324ccc4f16a8067f3cff385c97dd6d896f79ce4b566ca0e0
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:811301a17064824ab77efb8821fe0850b338b297706f2cc6e556681f1be6c9da
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:538016611f8c4e6f7e27237058747d81dbea792eb14f6d371d0c3696b2c34c8b
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4629ac56391e24ce37dc46bc77f30aae58f05a7ed977de6bbc3cdc7f3f8639
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f28b312a9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f28b312f600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1200000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679237245982458011, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARfrwPmfjIb14FBw/RfrwPmfjIb14FBw/RfrwPmfjIb14FBw/RfrwPmfjIb14FBw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGAjZPlHRiz8f2Iw/+4ASv/Dcszwbrcs+8oASv7+ze7/BQwK/+Y1yP4ER9b3ghR0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzxF+vA+Z+MhvXgUHD9aAag8wA0rvN3PxzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]\n [ 0.4706594 -0.03952351 0.6096873 ]]", "desired_goal": "[[ 0.42388988 1.0923253 1.1003455 ]\n [-0.5722806 0.02195594 0.39780506]\n [-0.57228005 -0.98321146 -0.50884634]\n [ 0.94747883 -0.11966229 0.615324 ]]", "observation": "[[ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]\n [ 0.4706594 -0.03952351 0.6096873 0.02050846 -0.01044029 0.02439111]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACjf7PebzIb3C2EU+Jk3RPCV2C73Tk3g+iLqqvSbpIL1wtIE+SACtPIlb7b1XNpQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12266357 -0.03953924 0.19320968]\n [ 0.02554948 -0.03404822 0.2427514 ]\n [-0.08336359 -0.03928485 0.25332975]\n [ 0.0211183 -0.11589725 0.28947708]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIguZz7nZ9CMCUhpRSlIwBbJRLMowBdJRHQK47jMYdhiN1fZQoaAZoCWgPQwg/yLJg4n8QwJSGlFKUaBVLMmgWR0CuOzgIyCWedX2UKGgGaAloD0MI3eo56X3DGcCUhpRSlGgVSzJoFkdArjrg/9pAU3V9lChoBmgJaA9DCM4AF2TLMhHAlIaUUpRoFUsyaBZHQK46hOkcjqx1fZQoaAZoCWgPQwg2OuenOD4TwJSGlFKUaBVLMmgWR0CuPJPpyIYWdX2UKGgGaAloD0MIq+tQTUnWBcCUhpRSlGgVSzJoFkdArjw+gBcRlHV9lChoBmgJaA9DCAIpsWt7ixfAlIaUUpRoFUsyaBZHQK475uAqd6N1fZQoaAZoCWgPQwjbiCe7mfECwJSGlFKUaBVLMmgWR0CuO4vE0iyIdX2UKGgGaAloD0MIhQX3Ax4oGMCUhpRSlGgVSzJoFkdArj2kqz7di3V9lChoBmgJaA9DCGcsms5OBh7AlIaUUpRoFUsyaBZHQK49T0hePaN1fZQoaAZoCWgPQwgIWoEhq9scwJSGlFKUaBVLMmgWR0CuPPcohIOIdX2UKGgGaAloD0MIodl1b0VyEsCUhpRSlGgVSzJoFkdArjybCHh0hnV9lChoBmgJaA9DCNV6v9GOKxPAlIaUUpRoFUsyaBZHQK4+qkcCHRF1fZQoaAZoCWgPQwgOFHgnn44XwJSGlFKUaBVLMmgWR0CuPlTrE9+xdX2UKGgGaAloD0MIchjMXyHDEsCUhpRSlGgVSzJoFkdArj39ZNfw7XV9lChoBmgJaA9DCNwqiIGuvQzAlIaUUpRoFUsyaBZHQK49oUVSGah1fZQoaAZoCWgPQwiNX3glyaMVwJSGlFKUaBVLMmgWR0CuP9rgflp5dX2UKGgGaAloD0MIL6aZ7nXSG8CUhpRSlGgVSzJoFkdArj+F58jRlnV9lChoBmgJaA9DCI83+S06WQzAlIaUUpRoFUsyaBZHQK4/LiNKh+R1fZQoaAZoCWgPQwgVi98UVpoWwJSGlFKUaBVLMmgWR0CuPtK1gH/tdX2UKGgGaAloD0MIFm2Oc5tQFsCUhpRSlGgVSzJoFkdArkDswco6S3V9lChoBmgJaA9DCL8OnDOidA/AlIaUUpRoFUsyaBZHQK5Al3rUsnR1fZQoaAZoCWgPQwjFHtrHCi4SwJSGlFKUaBVLMmgWR0CuQD/Dcdo4dX2UKGgGaAloD0MIZVHYRdETHMCUhpRSlGgVSzJoFkdArj/jor4FinV9lChoBmgJaA9DCGh6ibFMvw/AlIaUUpRoFUsyaBZHQK5CHPBSDRN1fZQoaAZoCWgPQwhCCMiXUKERwJSGlFKUaBVLMmgWR0CuQcePJaJRdX2UKGgGaAloD0MIySB3EabIAMCUhpRSlGgVSzJoFkdArkFwKx9oe3V9lChoBmgJaA9DCAA3ixcLExPAlIaUUpRoFUsyaBZHQK5BFJDE3sJ1fZQoaAZoCWgPQwgHmWTkLIwOwJSGlFKUaBVLMmgWR0CuQxu4oZyddX2UKGgGaAloD0MI+DQnLzLBGMCUhpRSlGgVSzJoFkdArkLG23KB/nV9lChoBmgJaA9DCL6FdePd4SLAlIaUUpRoFUsyaBZHQK5CbxyXD3x1fZQoaAZoCWgPQwj18dB3t9IFwJSGlFKUaBVLMmgWR0CuQhNTLns+dX2UKGgGaAloD0MIFviKbr0WGcCUhpRSlGgVSzJoFkdArkQJAD7qIXV9lChoBmgJaA9DCLLzNjY74hjAlIaUUpRoFUsyaBZHQK5DtIS13MZ1fZQoaAZoCWgPQwjn/X+cMDEawJSGlFKUaBVLMmgWR0CuQ1ySNfgKdX2UKGgGaAloD0MIdcsO8Q9bEcCUhpRSlGgVSzJoFkdArkMAeT3Zf3V9lChoBmgJaA9DCPtXVpqU4gzAlIaUUpRoFUsyaBZHQK5FFW1+iJx1fZQoaAZoCWgPQwgw2A3bFsUNwJSGlFKUaBVLMmgWR0CuRMAZbY9QdX2UKGgGaAloD0MIkx6GVicXE8CUhpRSlGgVSzJoFkdArkRn5HmRvHV9lChoBmgJaA9DCNxJRPgXQQ/AlIaUUpRoFUsyaBZHQK5EDAOavzR1fZQoaAZoCWgPQwhuh4bFqAsKwJSGlFKUaBVLMmgWR0CuRjUxVQyidX2UKGgGaAloD0MI3c6+8iAdDcCUhpRSlGgVSzJoFkdArkXgOH31z3V9lChoBmgJaA9DCGw+rg0VAwnAlIaUUpRoFUsyaBZHQK5FiACnxax1fZQoaAZoCWgPQwihSPdzCoogwJSGlFKUaBVLMmgWR0CuRSxX4j8ldX2UKGgGaAloD0MIGt8Xl6rkE8CUhpRSlGgVSzJoFkdArkdN4NZvDXV9lChoBmgJaA9DCCeIug9AyhTAlIaUUpRoFUsyaBZHQK5G+Kohpxp1fZQoaAZoCWgPQwiazk4GR6kdwJSGlFKUaBVLMmgWR0CuRqGi5/b1dX2UKGgGaAloD0MI0Oy6tyKREsCUhpRSlGgVSzJoFkdArkZFe4TbnHV9lChoBmgJaA9DCDauf9dn/hDAlIaUUpRoFUsyaBZHQK5INAdn0051fZQoaAZoCWgPQwi3t1uSA1YMwJSGlFKUaBVLMmgWR0CuR96nJkoXdX2UKGgGaAloD0MInl4pyxDHE8CUhpRSlGgVSzJoFkdArkeGvZAY53V9lChoBmgJaA9DCOiFOxdGug3AlIaUUpRoFUsyaBZHQK5HKojOcDt1fZQoaAZoCWgPQwiJmX0eo3wSwJSGlFKUaBVLMmgWR0CuSSV5jYqYdX2UKGgGaAloD0MIfA3BcRm3GsCUhpRSlGgVSzJoFkdArkjQLPUrkXV9lChoBmgJaA9DCNGuQspPKhHAlIaUUpRoFUsyaBZHQK5IeCMglnh1fZQoaAZoCWgPQwibO/pfrkULwJSGlFKUaBVLMmgWR0CuSBwZGax5dX2UKGgGaAloD0MIr2Ab8WT3EcCUhpRSlGgVSzJoFkdArkohjvuw5nV9lChoBmgJaA9DCKHyr+WVSwnAlIaUUpRoFUsyaBZHQK5JzDaXa8J1fZQoaAZoCWgPQwhq9dVVgfoJwJSGlFKUaBVLMmgWR0CuSXQa72+PdX2UKGgGaAloD0MI4ng+A+q9HMCUhpRSlGgVSzJoFkdArkkX8TBZZHV9lChoBmgJaA9DCI6s/DIY4wrAlIaUUpRoFUsyaBZHQK5LDdi2Dxt1fZQoaAZoCWgPQwifru5YbDMZwJSGlFKUaBVLMmgWR0CuSrh99c8ldX2UKGgGaAloD0MIR1Z+GYzpIMCUhpRSlGgVSzJoFkdArkpgXoC+13V9lChoBmgJaA9DCHVWC+wxkRHAlIaUUpRoFUsyaBZHQK5KBDYywfR1fZQoaAZoCWgPQwie7dEb7uMSwJSGlFKUaBVLMmgWR0CuTBeFL39KdX2UKGgGaAloD0MIteGwNPBzEsCUhpRSlGgVSzJoFkdArkvCGQCCBnV9lChoBmgJaA9DCGXDmsqicBrAlIaUUpRoFUsyaBZHQK5LafYBeX11fZQoaAZoCWgPQwgb1lQWhV0cwJSGlFKUaBVLMmgWR0CuSw4xL0z1dX2UKGgGaAloD0MIxsN7DiyXG8CUhpRSlGgVSzJoFkdArk1BU5uIh3V9lChoBmgJaA9DCPbwZaIIKRHAlIaUUpRoFUsyaBZHQK5M6+t8uz11fZQoaAZoCWgPQwhWKT3TS2wMwJSGlFKUaBVLMmgWR0CuTJQ8fV7QdX2UKGgGaAloD0MIQtDRqpZUGcCUhpRSlGgVSzJoFkdArkw5B1LamHV9lChoBmgJaA9DCOEp5Eo9SxLAlIaUUpRoFUsyaBZHQK5OQ7T2FnJ1fZQoaAZoCWgPQwjnbWx2pPofwJSGlFKUaBVLMmgWR0CuTe7Kq4pddX2UKGgGaAloD0MInWSryykBGMCUhpRSlGgVSzJoFkdArk2XT3IuG3V9lChoBmgJaA9DCK0Tl+MVqBDAlIaUUpRoFUsyaBZHQK5NO0uUUwl1fZQoaAZoCWgPQwiiREseTwsZwJSGlFKUaBVLMmgWR0CuT00jTrmhdX2UKGgGaAloD0MISMDo8uaAE8CUhpRSlGgVSzJoFkdArk74gPmPo3V9lChoBmgJaA9DCPIolfCEfgnAlIaUUpRoFUsyaBZHQK5OoEkB0ZF1fZQoaAZoCWgPQwipFhHF5C0NwJSGlFKUaBVLMmgWR0CuTkQtJ4B4dX2UKGgGaAloD0MIfjfdskO8FsCUhpRSlGgVSzJoFkdArlDWb/ffoHV9lChoBmgJaA9DCJOpglFJ3RLAlIaUUpRoFUsyaBZHQK5Qgbp/wy91fZQoaAZoCWgPQwhsQ8U4f4MWwJSGlFKUaBVLMmgWR0CuUCscIZ62dX2UKGgGaAloD0MIxouFIXI6E8CUhpRSlGgVSzJoFkdArk/PhKlHjXV9lChoBmgJaA9DCP922a87TRTAlIaUUpRoFUsyaBZHQK5Sa+6iCat1fZQoaAZoCWgPQwgI5ujxe2shwJSGlFKUaBVLMmgWR0CuUhcZ9/jLdX2UKGgGaAloD0MIOGvwvipHFsCUhpRSlGgVSzJoFkdArlHAkE9t/HV9lChoBmgJaA9DCAQDCB9KtAvAlIaUUpRoFUsyaBZHQK5RZQVsUIt1fZQoaAZoCWgPQwivWpnwS20QwJSGlFKUaBVLMmgWR0CuU/8mrsBydX2UKGgGaAloD0MISdi3k4hwDMCUhpRSlGgVSzJoFkdArlOqaw2VFHV9lChoBmgJaA9DCI7r3/WZKyDAlIaUUpRoFUsyaBZHQK5TUxUNrj51fZQoaAZoCWgPQwjThy6ob+kbwJSGlFKUaBVLMmgWR0CuUveXAuZkdX2UKGgGaAloD0MIkGeXb31YBMCUhpRSlGgVSzJoFkdArlYljgAIY3V9lChoBmgJaA9DCJtWCoFcohnAlIaUUpRoFUsyaBZHQK5V0TC+De11fZQoaAZoCWgPQwi4QILix9gEwJSGlFKUaBVLMmgWR0CuVXr7fpEAdX2UKGgGaAloD0MIy6Kwi6JnD8CUhpRSlGgVSzJoFkdArlUgctGutHV9lChoBmgJaA9DCBFwCFVqVgrAlIaUUpRoFUsyaBZHQK5X1q5byH51fZQoaAZoCWgPQwggCmZMwRoMwJSGlFKUaBVLMmgWR0CuV4Ikqto0dX2UKGgGaAloD0MIpGyRtBudEcCUhpRSlGgVSzJoFkdArlcq3w1BMXV9lChoBmgJaA9DCGJqSx3klRTAlIaUUpRoFUsyaBZHQK5W0HbAUL51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f211075bb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f211075c800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679406691011789410, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArAW7PtZng7t1bg8/rAW7PtZng7t1bg8/rAW7PtZng7t1bg8/rAW7PtZng7t1bg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7R2aP7b1bT9ZzvY9s8wPvj1YmD++AnS/canUP8/Gub+6+i4/DbQLvJE3pD6SA6W7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACsBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTusBbs+1meDu3VuDz+SOKg8RBPIuooYtTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]\n [ 0.36527765 -0.00401018 0.5602792 ]]", "desired_goal": "[[ 1.2040383 0.9295305 0.12051076]\n [-0.1404293 1.1901928 -0.95316684]\n [ 1.661421 -1.4513797 0.6835133 ]\n [-0.00852681 0.32073644 -0.00503583]]", "observation": "[[ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]\n [ 0.36527765 -0.00401018 0.5602792 0.02053479 -0.00152645 0.00552661]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxthJvfciqr0nRmU+Mi8Uvmc0vD3BLhE+Azigvbs4mr1t04k9e+4SvbU/ub3zEDw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.049279 -0.0830745 0.22390042]\n [-0.14471129 0.09189682 0.14177991]\n [-0.07823183 -0.07530352 0.06729779]\n [-0.03587196 -0.09045354 0.1836584 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqcAGM8gBsCUhpRSlIwBbJRLMowBdJRHQKccPkrf+CN1fZQoaAZoCWgPQwgDtK1mnbEUwJSGlFKUaBVLMmgWR0CnG+j0cwQEdX2UKGgGaAloD0MIOlyrPezlBcCUhpRSlGgVSzJoFkdApxuNI065oXV9lChoBmgJaA9DCApMp3UbdAfAlIaUUpRoFUsyaBZHQKcbOVafSQZ1fZQoaAZoCWgPQwiy1lBqL8IFwJSGlFKUaBVLMmgWR0CnHUMv7FbWdX2UKGgGaAloD0MISkONQpLZC8CUhpRSlGgVSzJoFkdApxztz6rNn3V9lChoBmgJaA9DCA6hSs0eaAXAlIaUUpRoFUsyaBZHQKcckgezUqh1fZQoaAZoCWgPQwiwcmiR7ZwDwJSGlFKUaBVLMmgWR0CnHD40Mw10dX2UKGgGaAloD0MITySYamYtBcCUhpRSlGgVSzJoFkdApx5ViMHbAXV9lChoBmgJaA9DCMuBHmrb0ArAlIaUUpRoFUsyaBZHQKceADklu3t1fZQoaAZoCWgPQwiOk8K8xzkKwJSGlFKUaBVLMmgWR0CnHaWJJoTPdX2UKGgGaAloD0MIvfxOkxkvFMCUhpRSlGgVSzJoFkdApx1SH6/IsHV9lChoBmgJaA9DCJj6eVOR6gPAlIaUUpRoFUsyaBZHQKcfXelbeM11fZQoaAZoCWgPQwiQMuIC0FgRwJSGlFKUaBVLMmgWR0CnHwh7/n4gdX2UKGgGaAloD0MIlN43vvYMAMCUhpRSlGgVSzJoFkdApx6sp/gBLnV9lChoBmgJaA9DCJXurrMhPwTAlIaUUpRoFUsyaBZHQKceWNvwVj91fZQoaAZoCWgPQwgRbjKqDIMDwJSGlFKUaBVLMmgWR0CnIHS6tknUdX2UKGgGaAloD0MIpU+r6A8tDcCUhpRSlGgVSzJoFkdApyAfS0BwM3V9lChoBmgJaA9DCDqvsUtUDwfAlIaUUpRoFUsyaBZHQKcfw6cRUWF1fZQoaAZoCWgPQwh6GFqdnCENwJSGlFKUaBVLMmgWR0CnH2/g75mAdX2UKGgGaAloD0MIAwmKH2MOA8CUhpRSlGgVSzJoFkdApyHrdN34bnV9lChoBmgJaA9DCAx1WOGWrwPAlIaUUpRoFUsyaBZHQKchlpcophF1fZQoaAZoCWgPQwgGSgosgCkMwJSGlFKUaBVLMmgWR0CnITtjCpFTdX2UKGgGaAloD0MIWHVWC+yRBMCUhpRSlGgVSzJoFkdApyDn9WIXTHV9lChoBmgJaA9DCFNcVfZd8RLAlIaUUpRoFUsyaBZHQKcjp8AJb+t1fZQoaAZoCWgPQwg1fXbAdWUJwJSGlFKUaBVLMmgWR0CnI1MAeaKDdX2UKGgGaAloD0MIuAGfH0aoAsCUhpRSlGgVSzJoFkdApyL4BRyfc3V9lChoBmgJaA9DCCHmkqrtpgXAlIaUUpRoFUsyaBZHQKcipQWvbGp1fZQoaAZoCWgPQwjjjGFO0CYKwJSGlFKUaBVLMmgWR0CnJWZsbedkdX2UKGgGaAloD0MIldQJaCLsA8CUhpRSlGgVSzJoFkdApyUR0IToMnV9lChoBmgJaA9DCATo9/2b9wLAlIaUUpRoFUsyaBZHQKcktxlQMx51fZQoaAZoCWgPQwg6OxkcJY8KwJSGlFKUaBVLMmgWR0CnJGRUFSsKdX2UKGgGaAloD0MIcalKW1zjAsCUhpRSlGgVSzJoFkdApyctgBtDUnV9lChoBmgJaA9DCPDeUWNCTAfAlIaUUpRoFUsyaBZHQKcm2QCCBf91fZQoaAZoCWgPQwijycUYWKcFwJSGlFKUaBVLMmgWR0CnJn4k3S8bdX2UKGgGaAloD0MIbVhTWRQWA8CUhpRSlGgVSzJoFkdApyYrRIBikXV9lChoBmgJaA9DCKSnyCHi5gPAlIaUUpRoFUsyaBZHQKco+EvkBCF1fZQoaAZoCWgPQwhQ/u4dNbYQwJSGlFKUaBVLMmgWR0CnKKOh0yP/dX2UKGgGaAloD0MIwXCuYYbmCMCUhpRSlGgVSzJoFkdApyhImmce83V9lChoBmgJaA9DCCdO7ncoygzAlIaUUpRoFUsyaBZHQKcn9YmsvIx1fZQoaAZoCWgPQwiOImsNpVYHwJSGlFKUaBVLMmgWR0CnKqe7L+xXdX2UKGgGaAloD0MI2zaMguAxDsCUhpRSlGgVSzJoFkdApypTBVMmGHV9lChoBmgJaA9DCHhjQWFQ5gTAlIaUUpRoFUsyaBZHQKcp+BbwBo51fZQoaAZoCWgPQwjniedsAcEEwJSGlFKUaBVLMmgWR0CnKaTV2A5JdX2UKGgGaAloD0MIh8Q9lj6UCcCUhpRSlGgVSzJoFkdApyvLpX6qKnV9lChoBmgJaA9DCNDv+zcvbg3AlIaUUpRoFUsyaBZHQKcrdiOvMbF1fZQoaAZoCWgPQwgipkQSvSwFwJSGlFKUaBVLMmgWR0CnKxpfQa73dX2UKGgGaAloD0MIm1d1Vgts/7+UhpRSlGgVSzJoFkdApyrGvdM0xnV9lChoBmgJaA9DCMFUM2spoADAlIaUUpRoFUsyaBZHQKcs0TrVvuR1fZQoaAZoCWgPQwghWcAEbh0PwJSGlFKUaBVLMmgWR0CnLHuRT0g9dX2UKGgGaAloD0MIWdqpudyABMCUhpRSlGgVSzJoFkdApywf9cbBGnV9lChoBmgJaA9DCGRbBpylRArAlIaUUpRoFUsyaBZHQKcrzC2MKkV1fZQoaAZoCWgPQwgHQNzVqwgBwJSGlFKUaBVLMmgWR0CnLdfmknCwdX2UKGgGaAloD0MIxciSOZZ3BMCUhpRSlGgVSzJoFkdApy2CZUkv9XV9lChoBmgJaA9DCNW0i2mmWwPAlIaUUpRoFUsyaBZHQKctJpfQa751fZQoaAZoCWgPQwj3r6w0KUUFwJSGlFKUaBVLMmgWR0CnLNK8lHBldX2UKGgGaAloD0MIucK7XMQ3BsCUhpRSlGgVSzJoFkdApy7chC+lCXV9lChoBmgJaA9DCDnSGRh5uQXAlIaUUpRoFUsyaBZHQKcuh2xIJ7d1fZQoaAZoCWgPQwjX+Ez2z9P/v5SGlFKUaBVLMmgWR0CnLiubiIcjdX2UKGgGaAloD0MIKPIk6ZpJAsCUhpRSlGgVSzJoFkdApy3Xnp0OmXV9lChoBmgJaA9DCAngZvFiAQTAlIaUUpRoFUsyaBZHQKcv7e5WilB1fZQoaAZoCWgPQwi4c2GkF9UKwJSGlFKUaBVLMmgWR0CnL5iNbTttdX2UKGgGaAloD0MInrex2ZEq+L+UhpRSlGgVSzJoFkdApy882DQJHHV9lChoBmgJaA9DCFPovMYuEQHAlIaUUpRoFUsyaBZHQKcu6SMcZLt1fZQoaAZoCWgPQwj+YUuPppoKwJSGlFKUaBVLMmgWR0CnMPdu5z5odX2UKGgGaAloD0MI1SDM7V6uEMCUhpRSlGgVSzJoFkdApzChyMkyDnV9lChoBmgJaA9DCLrcYKjDahPAlIaUUpRoFUsyaBZHQKcwRdCVryl1fZQoaAZoCWgPQwibHhSUolUIwJSGlFKUaBVLMmgWR0CnL/IddVvNdX2UKGgGaAloD0MIIXh8e9dABcCUhpRSlGgVSzJoFkdApzIB9XtBwHV9lChoBmgJaA9DCJ/L1CR4AwTAlIaUUpRoFUsyaBZHQKcxrERaouR1fZQoaAZoCWgPQwj2XRH8b4ULwJSGlFKUaBVLMmgWR0CnMVBtDUmVdX2UKGgGaAloD0MIEeD0Lt5vCMCUhpRSlGgVSzJoFkdApzD8snRb8nV9lChoBmgJaA9DCB6oUx7daAbAlIaUUpRoFUsyaBZHQKczDk+X7ch1fZQoaAZoCWgPQwgnhXmPM00FwJSGlFKUaBVLMmgWR0CnMrkfT1CgdX2UKGgGaAloD0MID4C4q1eRDcCUhpRSlGgVSzJoFkdApzJdeF+NLnV9lChoBmgJaA9DCLBUF/AyQwbAlIaUUpRoFUsyaBZHQKcyCb961LJ1fZQoaAZoCWgPQwjUDn9N1kgGwJSGlFKUaBVLMmgWR0CnNBoPK+zudX2UKGgGaAloD0MIl5F6T+VUEcCUhpRSlGgVSzJoFkdApzPEghbGFXV9lChoBmgJaA9DCKj+QSRDLg7AlIaUUpRoFUsyaBZHQKczaL3sXzl1fZQoaAZoCWgPQwg+IqZEEj0BwJSGlFKUaBVLMmgWR0CnMxT19ORDdX2UKGgGaAloD0MIOE2fHXD9BMCUhpRSlGgVSzJoFkdApzUr5CWu5nV9lChoBmgJaA9DCM1XycfukhHAlIaUUpRoFUsyaBZHQKc01mJ3xF11fZQoaAZoCWgPQwhsWikEcmkJwJSGlFKUaBVLMmgWR0CnNHqT8pCsdX2UKGgGaAloD0MICK7yBMJuAsCUhpRSlGgVSzJoFkdApzQm1WsBAHV9lChoBmgJaA9DCNGSx9PyQwLAlIaUUpRoFUsyaBZHQKc2Ni5NGmV1fZQoaAZoCWgPQwi2vkhoy7kEwJSGlFKUaBVLMmgWR0CnNeC17Y03dX2UKGgGaAloD0MIXhCRmnZRBcCUhpRSlGgVSzJoFkdApzWE2DQJHHV9lChoBmgJaA9DCMgJE0azkg/AlIaUUpRoFUsyaBZHQKc1MSYgJTl1fZQoaAZoCWgPQwj0bcFSXYARwJSGlFKUaBVLMmgWR0CnNzZbY9PldX2UKGgGaAloD0MIA3l2+dZHBMCUhpRSlGgVSzJoFkdApzbgmCyyEHV9lChoBmgJaA9DCGyU9ZuJiQfAlIaUUpRoFUsyaBZHQKc2hLM9r451fZQoaAZoCWgPQwicNXhflWsUwJSGlFKUaBVLMmgWR0CnNjC04R29dX2UKGgGaAloD0MI/wQXK2qQC8CUhpRSlGgVSzJoFkdApzg8f1YhdXV9lChoBmgJaA9DCEz8UdSZGxDAlIaUUpRoFUsyaBZHQKc35wG4ZuR1fZQoaAZoCWgPQwiMS1Xa4noBwJSGlFKUaBVLMmgWR0CnN4tQKrq/dX2UKGgGaAloD0MI8s8M4gN7BMCUhpRSlGgVSzJoFkdApzc3mzSkTHV9lChoBmgJaA9DCCkHswkwDAPAlIaUUpRoFUsyaBZHQKc5UK/Efkp1fZQoaAZoCWgPQwhBKzBkdcsDwJSGlFKUaBVLMmgWR0CnOPs5n13/dX2UKGgGaAloD0MIY7SOqiaoFMCUhpRSlGgVSzJoFkdApzifcBU70XV9lChoBmgJaA9DCMDqyJHOYAnAlIaUUpRoFUsyaBZHQKc4S7iADq51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -4.976216460997239, "std_reward": 1.5963894173512525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T15:52:14.659716"}
 
1
+ {"mean_reward": -3.0110673203133045, "std_reward": 0.6310998215076304, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T14:43:25.295314"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52ae6cdbb2d5ed649513f27b0f5d539b366b487a1c97392caa527bccd37ffb26
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43a9be6d0c195e1a72eed54677f5e398bc8e66a02781ebade0b333546a3f9c1b
3
  size 3056