apparition
commited on
Commit
•
30eb207
1
Parent(s):
4e749c8
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1200.23 +/- 311.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:450f7f776f574d41d6ab265689504ee751a652e3c590ae151fe155f4cfdd458b
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f28b312a280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28b312a310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28b312a3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28b312a430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f28b312a4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f28b312a550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28b312a5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28b312a670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f28b312a700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28b312a790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28b312a820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28b312a8b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f28b312f440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679233064005000100,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAINBLT9u2LM/uFY0vnY/jj/jlPW/2EXLPWBK4r6ivoS+U/QiPyaXmb1otc4+ta5kv3zInb8KbnA+Typtvs3BpD9Upou+CZw+v1j8Mr82RZ6/D0LAvrxiB7/cTQO/PFSbP5uoZT/MEei/iqYRPzQAg78qeoM/nQ+8P8Xogb7cfN4/nQJpv7hrVD/YXOq+ftOEv5LnFT/YMVZA0kVxPxUPCD4O46K/RMnwPp59jb7wcqe+BfYjvzdXlb5RyEO+DHbtP6zFvb4VMtU/CBJJv8NFFj6bqGU/9jINP4qmET80AIO/iUxtP6d2jzwW1AU/MqH6Pp22jD+5Q4I/sLCcvss+Kr9eXx8/6o4xvoT4UT/KlR4/gzpNP8SFl7/bDsk+gsa1v4LaNj/b62y/h4h4v02fRz8qf/i+AWFtPDVXGz+IvhPAm6hlP8wR6L+KphE/NACDv/bWjj6Pk5o/4Pz6PDB6xT8OhWg/jriYP4UZYj4iMUa/EmLYPviD4T9P2mg/uSupPqW+uz/ynOq+86HmPocMOr8wJ9g+fvIhv3ISuz5p1JQ/ek3jviyrUT4+uU2/5L+OPGyujr/2Mg0/iqYRPzQAg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABE74E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJYBvgAAAAB0u/i/AAAAANa40b0AAAAA3KrsPwAAAAAD8Ps9AAAAAHIC5j8AAAAAnL59vAAAAADpmui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFD5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAAHjL0AAAAAKZXkvwAAAACpWfs9AAAAAKO05D8AAAAAcERquwAAAAAifQBAAAAAANqrB74AAAAAZfLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHsgwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBX8+s9AAAAAJWP+78AAAAAd4UGPgAAAABq1u4/AAAAAJpND74AAAAAR/XlPwAAAABwJ929AAAAADHM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB1Rk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAM+WHvQAAAADi0Nm/AAAAAM+IkDsAAAAAmYn1PwAAAABocKo9AAAAADgE9D8AAAAA2F1dPQAAAABM+f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZy+EVWS2aMAWyUTegDjAF0lEdAqyfhH7P6bnV9lChoBkdAnpBhJqZc9mgHTegDaAhHQKsovW1+iJx1fZQoaAZHQJxT3rgOz6doB03oA2gIR0CrMZrqt5lfdX2UKGgGR0CcgtZ4fOlgaAdN6ANoCEdAqzRaHymQ83V9lChoBkdAoDAiCxu89WgHTegDaAhHQKs2KJaaCtl1fZQoaAZHQJ5mN4LThHdoB03oA2gIR0CrNqbvgFX8dX2UKGgGR0CcPAZLIxQBaAdN6ANoCEdAqz24XQ+lj3V9lChoBkdAoA3Rpvgm7mgHTegDaAhHQKtAi2cawUx1fZQoaAZHQJrZR9NN8E5oB03oA2gIR0CrQtZ/kNnXdX2UKGgGR0CX03ib2Dg7aAdN6ANoCEdAq0OgH9m6G3V9lChoBkdAmUCKnNxEOWgHTegDaAhHQKtOFoi9qUN1fZQoaAZHQJ6QpsrNGExoB03oA2gIR0CrUORXXAdodX2UKGgGR0CZj53Ehq0uaAdN6ANoCEdAq1KZPRArx3V9lChoBkdAoDYFKsdT52gHTegDaAhHQKtTIDFId2h1fZQoaAZHQH3iKCxu89RoB03oA2gIR0CrWk0DdP+GdX2UKGgGR0CZURpr1uiwaAdN6ANoCEdAq11MV+I/JXV9lChoBkdAnR7euaF23mgHTegDaAhHQKtfCeUY8+11fZQoaAZHQJ7RW1a4c3loB03oA2gIR0CrX4wVbiZOdX2UKGgGR0CeT4ZOSGJvaAdN6ANoCEdAq2pieCkGinV9lChoBkdAm4Qeuieum2gHTegDaAhHQKttw9r433p1fZQoaAZHQJ5IsfT1CgNoB03oA2gIR0Crb387yQPqdX2UKGgGR0CeClJTl1bJaAdN6ANoCEdAq2/9/FzdUXV9lChoBkdAneEB+jM3ZWgHTegDaAhHQKt3D544ZMt1fZQoaAZHQJ0CIN/e+EhoB03oA2gIR0Cred2/8EV4dX2UKGgGR0CYdTE2YOUdaAdN6ANoCEdAq3uXfyf+THV9lChoBkdAmGeUbo8p1GgHTegDaAhHQKt8GIOYplV1fZQoaAZHQJzh/fgrH2hoB03oA2gIR0CrhV6po9LYdX2UKGgGR0Capg0/nnuBaAdN6ANoCEdAq4oZ6yB063V9lChoBkdAkSoG4mTkhmgHTegDaAhHQKuMO8FINEx1fZQoaAZHQJaGyFTNt65oB03oA2gIR0CrjLuLR8c/dX2UKGgGR0CVsf3EyckMaAdN6ANoCEdAq5P27voeP3V9lChoBkdAmwErp/wy7GgHTegDaAhHQKuW9iobXH11fZQoaAZHQJ5947yQPqdoB03oA2gIR0CrmLdsrNGFdX2UKGgGR0CdWFhJiAlOaAdN6ANoCEdAq5k87KaG6HV9lChoBkdAj9xOLJjlP2gHTegDaAhHQKuhMMgEEDB1fZQoaAZHQJC7fwPRRdhoB03oA2gIR0CrpaMZgogFdX2UKGgGR0CU5GWRA8jiaAdN6ANoCEdAq6iAbCJoCnV9lChoBkdAkwvz6N2ki2gHTegDaAhHQKupV531SO11fZQoaAZHQJZpm7QLNOdoB03oA2gIR0CrsOOv+wTudX2UKGgGR0CS7iPuG9HuaAdN6ANoCEdAq7OwmCyyEHV9lChoBkdAl4krH+6y0WgHTegDaAhHQKu1ZlRxcVx1fZQoaAZHQJTnx7v5P/JoB03oA2gIR0CrtehmoR7JdX2UKGgGR0CZhUGc4HX3aAdN6ANoCEdAq71EF+uvEHV9lChoBkdAnY3jB68g6mgHTegDaAhHQKvBAZVn27F1fZQoaAZHQJ5RcQBgeBBoB03oA2gIR0Crw6L4nF5wdX2UKGgGR0CZiVR4hUzbaAdN6ANoCEdAq8R0bgjyF3V9lChoBkdAmZ5Z8KG+K2gHTegDaAhHQKvNn5ylvZR1fZQoaAZHQJ/Gf4M4LkVoB03oA2gIR0Cr0HrMTviMdX2UKGgGR0Cajg3yI55raAdN6ANoCEdAq9IydvsJIHV9lChoBkdAnFqTYVZcLWgHTegDaAhHQKvSuTRIBil1fZQoaAZHQJ5/bIS13MZoB03oA2gIR0Cr2e2/JvHcdX2UKGgGR0Cf2iWBBiTdaAdN6ANoCEdAq9zPbqQiinV9lChoBkdAnQipuuRs/WgHTegDaAhHQKvfH27nPmh1fZQoaAZHQJ2gT82rGR5oB03oA2gIR0Cr3+QdS2pidX2UKGgGR0CYhHI2wV0taAdN6ANoCEdAq+pVGLDQ7nV9lChoBkdAnPsBDTjNp2gHTegDaAhHQKvtKWE9Mbp1fZQoaAZHQJ3QkEB8x9JoB03oA2gIR0Cr7uk74i5edX2UKGgGR0CYfksDnvDxaAdN6ANoCEdAq+9wa1kUbnV9lChoBkdAmigtTo+wDGgHTegDaAhHQKv2m/47A+J1fZQoaAZHQJtZ679Q40doB03oA2gIR0Cr+WvuG9HudX2UKGgGR0CdKLd/axoqaAdN6ANoCEdAq/ssuzyBkXV9lChoBkdAl0N8uez2OGgHTegDaAhHQKv7rtCRfWt1fZQoaAZHQJzE1DYywfRoB03oA2gIR0CsBrEH+qBFdX2UKGgGR0CXKWVMVUMoaAdN6ANoCEdArAo7S1E3KnV9lChoBkdAm4mj4+KTCGgHTegDaAhHQKwMDw0fozN1fZQoaAZHQJrF9KJ2t+1oB03oA2gIR0CsDJkI5YHPdX2UKGgGR0CdUCbb1yvLaAdN6ANoCEdArBPQT4+KTHV9lChoBkdAnjYvigkC3mgHTegDaAhHQKwWuRRMvh91fZQoaAZHQJoAGu3c581oB03oA2gIR0CsGHjvNNahdX2UKGgGR0CfLUhhpg1FaAdN6ANoCEdArBkI0XP7enV9lChoBkdAnohG8VYZEWgHTegDaAhHQKwiafDk2gp1fZQoaAZHQJ25UMnZ00ZoB03oA2gIR0CsJx8Bltj1dX2UKGgGR0CbiwyGBWgfaAdN6ANoCEdArCkIrjHXE3V9lChoBkdAm6CHpfQa72gHTegDaAhHQKwpjZB9kSV1fZQoaAZHQJ4WzoFFDv5oB03oA2gIR0CsMJ7D/EOzdX2UKGgGR0CTDJrsSkCWaAdN6ANoCEdArDNvcL0BfnV9lChoBkdAmWVePV/c32gHTegDaAhHQKw1LKOktVd1fZQoaAZHQJn59qWTouBoB03oA2gIR0CsNazBRAKOdX2UKGgGR0CaKgdLg4wRaAdN6ANoCEdArD09k6Lfk3V9lChoBkdAnJvwm3OObWgHTegDaAhHQKxBwhDgIhR1fZQoaAZHQJxOisU7CBRoB03oA2gIR0CsRK4rjHXFdX2UKGgGR0Ccz98NQTEjaAdN6ANoCEdArEWKPuG9H3V9lChoBkdAnvF7LEDQq2gHTegDaAhHQKxNZVFx4pt1fZQoaAZHQJzxETBZZB9oB03oA2gIR0CsUCdzfaYedX2UKGgGR0CeEnUB4lhPaAdN6ANoCEdArFHlBIFvAHV9lChoBkdAms1UqtozvmgHTegDaAhHQKxSan3L3bp1fZQoaAZHQJ06PV3EAHVoB03oA2gIR0CsWZGipNsWdX2UKGgGR0CfMVQnhKlIaAdN6ANoCEdArF0Ymb9ZR3V9lChoBkdAn2GjwYtQK2gHTegDaAhHQKxfun+AEuB1fZQoaAZHQJnKEoTfzjFoB03oA2gIR0CsYJWL5ylvdX2UKGgGR0Cc4tL8JlasaAdN6ANoCEdArGnyH0se4nV9lChoBkdAltdMo2GZeGgHTegDaAhHQKxs0YyfthN1fZQoaAZHQJgp/Ackt29oB03oA2gIR0Csbr6zeGfxdX2UKGgGR0CSDe0jkdWAaAdN6ANoCEdArG9SwY+B6XV9lChoBkdAnt9C/CZWrGgHTegDaAhHQKx2hGBFuvV1fZQoaAZHQJMx/HDJlrdoB03oA2gIR0CseVYsd1dPdX2UKGgGR0B9jkJBw++uaAdN6ANoCEdArHt9HJ9y93V9lChoBkdAe8vM5wOvuGgHTegDaAhHQKx8TpM6BAh1fZQoaAZHQIf/ki8nNPhoB03oA2gIR0Cshzpb+tKadX2UKGgGR0CXfKQRf4RFaAdN6ANoCEdArIoez4UN8XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cc708419514949bbae39ed87e85458904785605ae8b3a89ca9fa89e04a67c67
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43ef7464a1cc022ae84957977d19ec563ca57a8b8b7916167b42c93a96051983
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28b312a280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28b312a310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28b312a3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28b312a430>", "_build": "<function ActorCriticPolicy._build at 0x7f28b312a4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f28b312a550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28b312a5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28b312a670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f28b312a700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28b312a790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28b312a820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28b312a8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f28b312f440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679233064005000100, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAINBLT9u2LM/uFY0vnY/jj/jlPW/2EXLPWBK4r6ivoS+U/QiPyaXmb1otc4+ta5kv3zInb8KbnA+Typtvs3BpD9Upou+CZw+v1j8Mr82RZ6/D0LAvrxiB7/cTQO/PFSbP5uoZT/MEei/iqYRPzQAg78qeoM/nQ+8P8Xogb7cfN4/nQJpv7hrVD/YXOq+ftOEv5LnFT/YMVZA0kVxPxUPCD4O46K/RMnwPp59jb7wcqe+BfYjvzdXlb5RyEO+DHbtP6zFvb4VMtU/CBJJv8NFFj6bqGU/9jINP4qmET80AIO/iUxtP6d2jzwW1AU/MqH6Pp22jD+5Q4I/sLCcvss+Kr9eXx8/6o4xvoT4UT/KlR4/gzpNP8SFl7/bDsk+gsa1v4LaNj/b62y/h4h4v02fRz8qf/i+AWFtPDVXGz+IvhPAm6hlP8wR6L+KphE/NACDv/bWjj6Pk5o/4Pz6PDB6xT8OhWg/jriYP4UZYj4iMUa/EmLYPviD4T9P2mg/uSupPqW+uz/ynOq+86HmPocMOr8wJ9g+fvIhv3ISuz5p1JQ/ek3jviyrUT4+uU2/5L+OPGyujr/2Mg0/iqYRPzQAg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABE74E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJYBvgAAAAB0u/i/AAAAANa40b0AAAAA3KrsPwAAAAAD8Ps9AAAAAHIC5j8AAAAAnL59vAAAAADpmui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFD5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAAHjL0AAAAAKZXkvwAAAACpWfs9AAAAAKO05D8AAAAAcERquwAAAAAifQBAAAAAANqrB74AAAAAZfLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHsgwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBX8+s9AAAAAJWP+78AAAAAd4UGPgAAAABq1u4/AAAAAJpND74AAAAAR/XlPwAAAABwJ929AAAAADHM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB1Rk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAM+WHvQAAAADi0Nm/AAAAAM+IkDsAAAAAmYn1PwAAAABocKo9AAAAADgE9D8AAAAA2F1dPQAAAABM+f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZy+EVWS2aMAWyUTegDjAF0lEdAqyfhH7P6bnV9lChoBkdAnpBhJqZc9mgHTegDaAhHQKsovW1+iJx1fZQoaAZHQJxT3rgOz6doB03oA2gIR0CrMZrqt5lfdX2UKGgGR0CcgtZ4fOlgaAdN6ANoCEdAqzRaHymQ83V9lChoBkdAoDAiCxu89WgHTegDaAhHQKs2KJaaCtl1fZQoaAZHQJ5mN4LThHdoB03oA2gIR0CrNqbvgFX8dX2UKGgGR0CcPAZLIxQBaAdN6ANoCEdAqz24XQ+lj3V9lChoBkdAoA3Rpvgm7mgHTegDaAhHQKtAi2cawUx1fZQoaAZHQJrZR9NN8E5oB03oA2gIR0CrQtZ/kNnXdX2UKGgGR0CX03ib2Dg7aAdN6ANoCEdAq0OgH9m6G3V9lChoBkdAmUCKnNxEOWgHTegDaAhHQKtOFoi9qUN1fZQoaAZHQJ6QpsrNGExoB03oA2gIR0CrUORXXAdodX2UKGgGR0CZj53Ehq0uaAdN6ANoCEdAq1KZPRArx3V9lChoBkdAoDYFKsdT52gHTegDaAhHQKtTIDFId2h1fZQoaAZHQH3iKCxu89RoB03oA2gIR0CrWk0DdP+GdX2UKGgGR0CZURpr1uiwaAdN6ANoCEdAq11MV+I/JXV9lChoBkdAnR7euaF23mgHTegDaAhHQKtfCeUY8+11fZQoaAZHQJ7RW1a4c3loB03oA2gIR0CrX4wVbiZOdX2UKGgGR0CeT4ZOSGJvaAdN6ANoCEdAq2pieCkGinV9lChoBkdAm4Qeuieum2gHTegDaAhHQKttw9r433p1fZQoaAZHQJ5IsfT1CgNoB03oA2gIR0Crb387yQPqdX2UKGgGR0CeClJTl1bJaAdN6ANoCEdAq2/9/FzdUXV9lChoBkdAneEB+jM3ZWgHTegDaAhHQKt3D544ZMt1fZQoaAZHQJ0CIN/e+EhoB03oA2gIR0Cred2/8EV4dX2UKGgGR0CYdTE2YOUdaAdN6ANoCEdAq3uXfyf+THV9lChoBkdAmGeUbo8p1GgHTegDaAhHQKt8GIOYplV1fZQoaAZHQJzh/fgrH2hoB03oA2gIR0CrhV6po9LYdX2UKGgGR0Capg0/nnuBaAdN6ANoCEdAq4oZ6yB063V9lChoBkdAkSoG4mTkhmgHTegDaAhHQKuMO8FINEx1fZQoaAZHQJaGyFTNt65oB03oA2gIR0CrjLuLR8c/dX2UKGgGR0CVsf3EyckMaAdN6ANoCEdAq5P27voeP3V9lChoBkdAmwErp/wy7GgHTegDaAhHQKuW9iobXH11fZQoaAZHQJ5947yQPqdoB03oA2gIR0CrmLdsrNGFdX2UKGgGR0CdWFhJiAlOaAdN6ANoCEdAq5k87KaG6HV9lChoBkdAj9xOLJjlP2gHTegDaAhHQKuhMMgEEDB1fZQoaAZHQJC7fwPRRdhoB03oA2gIR0CrpaMZgogFdX2UKGgGR0CU5GWRA8jiaAdN6ANoCEdAq6iAbCJoCnV9lChoBkdAkwvz6N2ki2gHTegDaAhHQKupV531SO11fZQoaAZHQJZpm7QLNOdoB03oA2gIR0CrsOOv+wTudX2UKGgGR0CS7iPuG9HuaAdN6ANoCEdAq7OwmCyyEHV9lChoBkdAl4krH+6y0WgHTegDaAhHQKu1ZlRxcVx1fZQoaAZHQJTnx7v5P/JoB03oA2gIR0CrtehmoR7JdX2UKGgGR0CZhUGc4HX3aAdN6ANoCEdAq71EF+uvEHV9lChoBkdAnY3jB68g6mgHTegDaAhHQKvBAZVn27F1fZQoaAZHQJ5RcQBgeBBoB03oA2gIR0Crw6L4nF5wdX2UKGgGR0CZiVR4hUzbaAdN6ANoCEdAq8R0bgjyF3V9lChoBkdAmZ5Z8KG+K2gHTegDaAhHQKvNn5ylvZR1fZQoaAZHQJ/Gf4M4LkVoB03oA2gIR0Cr0HrMTviMdX2UKGgGR0Cajg3yI55raAdN6ANoCEdAq9IydvsJIHV9lChoBkdAnFqTYVZcLWgHTegDaAhHQKvSuTRIBil1fZQoaAZHQJ5/bIS13MZoB03oA2gIR0Cr2e2/JvHcdX2UKGgGR0Cf2iWBBiTdaAdN6ANoCEdAq9zPbqQiinV9lChoBkdAnQipuuRs/WgHTegDaAhHQKvfH27nPmh1fZQoaAZHQJ2gT82rGR5oB03oA2gIR0Cr3+QdS2pidX2UKGgGR0CYhHI2wV0taAdN6ANoCEdAq+pVGLDQ7nV9lChoBkdAnPsBDTjNp2gHTegDaAhHQKvtKWE9Mbp1fZQoaAZHQJ3QkEB8x9JoB03oA2gIR0Cr7uk74i5edX2UKGgGR0CYfksDnvDxaAdN6ANoCEdAq+9wa1kUbnV9lChoBkdAmigtTo+wDGgHTegDaAhHQKv2m/47A+J1fZQoaAZHQJtZ679Q40doB03oA2gIR0Cr+WvuG9HudX2UKGgGR0CdKLd/axoqaAdN6ANoCEdAq/ssuzyBkXV9lChoBkdAl0N8uez2OGgHTegDaAhHQKv7rtCRfWt1fZQoaAZHQJzE1DYywfRoB03oA2gIR0CsBrEH+qBFdX2UKGgGR0CXKWVMVUMoaAdN6ANoCEdArAo7S1E3KnV9lChoBkdAm4mj4+KTCGgHTegDaAhHQKwMDw0fozN1fZQoaAZHQJrF9KJ2t+1oB03oA2gIR0CsDJkI5YHPdX2UKGgGR0CdUCbb1yvLaAdN6ANoCEdArBPQT4+KTHV9lChoBkdAnjYvigkC3mgHTegDaAhHQKwWuRRMvh91fZQoaAZHQJoAGu3c581oB03oA2gIR0CsGHjvNNahdX2UKGgGR0CfLUhhpg1FaAdN6ANoCEdArBkI0XP7enV9lChoBkdAnohG8VYZEWgHTegDaAhHQKwiafDk2gp1fZQoaAZHQJ25UMnZ00ZoB03oA2gIR0CsJx8Bltj1dX2UKGgGR0CbiwyGBWgfaAdN6ANoCEdArCkIrjHXE3V9lChoBkdAm6CHpfQa72gHTegDaAhHQKwpjZB9kSV1fZQoaAZHQJ4WzoFFDv5oB03oA2gIR0CsMJ7D/EOzdX2UKGgGR0CTDJrsSkCWaAdN6ANoCEdArDNvcL0BfnV9lChoBkdAmWVePV/c32gHTegDaAhHQKw1LKOktVd1fZQoaAZHQJn59qWTouBoB03oA2gIR0CsNazBRAKOdX2UKGgGR0CaKgdLg4wRaAdN6ANoCEdArD09k6Lfk3V9lChoBkdAnJvwm3OObWgHTegDaAhHQKxBwhDgIhR1fZQoaAZHQJxOisU7CBRoB03oA2gIR0CsRK4rjHXFdX2UKGgGR0Ccz98NQTEjaAdN6ANoCEdArEWKPuG9H3V9lChoBkdAnvF7LEDQq2gHTegDaAhHQKxNZVFx4pt1fZQoaAZHQJzxETBZZB9oB03oA2gIR0CsUCdzfaYedX2UKGgGR0CeEnUB4lhPaAdN6ANoCEdArFHlBIFvAHV9lChoBkdAms1UqtozvmgHTegDaAhHQKxSan3L3bp1fZQoaAZHQJ06PV3EAHVoB03oA2gIR0CsWZGipNsWdX2UKGgGR0CfMVQnhKlIaAdN6ANoCEdArF0Ymb9ZR3V9lChoBkdAn2GjwYtQK2gHTegDaAhHQKxfun+AEuB1fZQoaAZHQJnKEoTfzjFoB03oA2gIR0CsYJWL5ylvdX2UKGgGR0Cc4tL8JlasaAdN6ANoCEdArGnyH0se4nV9lChoBkdAltdMo2GZeGgHTegDaAhHQKxs0YyfthN1fZQoaAZHQJgp/Ackt29oB03oA2gIR0Csbr6zeGfxdX2UKGgGR0CSDe0jkdWAaAdN6ANoCEdArG9SwY+B6XV9lChoBkdAnt9C/CZWrGgHTegDaAhHQKx2hGBFuvV1fZQoaAZHQJMx/HDJlrdoB03oA2gIR0CseVYsd1dPdX2UKGgGR0B9jkJBw++uaAdN6ANoCEdArHt9HJ9y93V9lChoBkdAe8vM5wOvuGgHTegDaAhHQKx8TpM6BAh1fZQoaAZHQIf/ki8nNPhoB03oA2gIR0Cshzpb+tKadX2UKGgGR0CXfKQRf4RFaAdN6ANoCEdArIoez4UN8XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4a75277197ffee9a8f8e7dfd51f49eeef167343ebc863372f60f4a995c6d623
|
3 |
+
size 1042108
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1200.2336581371346, "std_reward": 311.6972607205415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T14:39:58.688410"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e224b86a9d6edc7061933444913a4609b408fe7e8f8eb7bb59a55b693eda0a6a
|
3 |
+
size 2136
|