apparition commited on
Commit
30eb207
1 Parent(s): 4e749c8

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1200.23 +/- 311.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:450f7f776f574d41d6ab265689504ee751a652e3c590ae151fe155f4cfdd458b
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28b312a280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28b312a310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28b312a3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28b312a430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f28b312a4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f28b312a550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28b312a5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28b312a670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f28b312a700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28b312a790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28b312a820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28b312a8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f28b312f440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679233064005000100,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAINBLT9u2LM/uFY0vnY/jj/jlPW/2EXLPWBK4r6ivoS+U/QiPyaXmb1otc4+ta5kv3zInb8KbnA+Typtvs3BpD9Upou+CZw+v1j8Mr82RZ6/D0LAvrxiB7/cTQO/PFSbP5uoZT/MEei/iqYRPzQAg78qeoM/nQ+8P8Xogb7cfN4/nQJpv7hrVD/YXOq+ftOEv5LnFT/YMVZA0kVxPxUPCD4O46K/RMnwPp59jb7wcqe+BfYjvzdXlb5RyEO+DHbtP6zFvb4VMtU/CBJJv8NFFj6bqGU/9jINP4qmET80AIO/iUxtP6d2jzwW1AU/MqH6Pp22jD+5Q4I/sLCcvss+Kr9eXx8/6o4xvoT4UT/KlR4/gzpNP8SFl7/bDsk+gsa1v4LaNj/b62y/h4h4v02fRz8qf/i+AWFtPDVXGz+IvhPAm6hlP8wR6L+KphE/NACDv/bWjj6Pk5o/4Pz6PDB6xT8OhWg/jriYP4UZYj4iMUa/EmLYPviD4T9P2mg/uSupPqW+uz/ynOq+86HmPocMOr8wJ9g+fvIhv3ISuz5p1JQ/ek3jviyrUT4+uU2/5L+OPGyujr/2Mg0/iqYRPzQAg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABE74E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJYBvgAAAAB0u/i/AAAAANa40b0AAAAA3KrsPwAAAAAD8Ps9AAAAAHIC5j8AAAAAnL59vAAAAADpmui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFD5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAAHjL0AAAAAKZXkvwAAAACpWfs9AAAAAKO05D8AAAAAcERquwAAAAAifQBAAAAAANqrB74AAAAAZfLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHsgwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBX8+s9AAAAAJWP+78AAAAAd4UGPgAAAABq1u4/AAAAAJpND74AAAAAR/XlPwAAAABwJ929AAAAADHM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB1Rk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAM+WHvQAAAADi0Nm/AAAAAM+IkDsAAAAAmYn1PwAAAABocKo9AAAAADgE9D8AAAAA2F1dPQAAAABM+f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZy+EVWS2aMAWyUTegDjAF0lEdAqyfhH7P6bnV9lChoBkdAnpBhJqZc9mgHTegDaAhHQKsovW1+iJx1fZQoaAZHQJxT3rgOz6doB03oA2gIR0CrMZrqt5lfdX2UKGgGR0CcgtZ4fOlgaAdN6ANoCEdAqzRaHymQ83V9lChoBkdAoDAiCxu89WgHTegDaAhHQKs2KJaaCtl1fZQoaAZHQJ5mN4LThHdoB03oA2gIR0CrNqbvgFX8dX2UKGgGR0CcPAZLIxQBaAdN6ANoCEdAqz24XQ+lj3V9lChoBkdAoA3Rpvgm7mgHTegDaAhHQKtAi2cawUx1fZQoaAZHQJrZR9NN8E5oB03oA2gIR0CrQtZ/kNnXdX2UKGgGR0CX03ib2Dg7aAdN6ANoCEdAq0OgH9m6G3V9lChoBkdAmUCKnNxEOWgHTegDaAhHQKtOFoi9qUN1fZQoaAZHQJ6QpsrNGExoB03oA2gIR0CrUORXXAdodX2UKGgGR0CZj53Ehq0uaAdN6ANoCEdAq1KZPRArx3V9lChoBkdAoDYFKsdT52gHTegDaAhHQKtTIDFId2h1fZQoaAZHQH3iKCxu89RoB03oA2gIR0CrWk0DdP+GdX2UKGgGR0CZURpr1uiwaAdN6ANoCEdAq11MV+I/JXV9lChoBkdAnR7euaF23mgHTegDaAhHQKtfCeUY8+11fZQoaAZHQJ7RW1a4c3loB03oA2gIR0CrX4wVbiZOdX2UKGgGR0CeT4ZOSGJvaAdN6ANoCEdAq2pieCkGinV9lChoBkdAm4Qeuieum2gHTegDaAhHQKttw9r433p1fZQoaAZHQJ5IsfT1CgNoB03oA2gIR0Crb387yQPqdX2UKGgGR0CeClJTl1bJaAdN6ANoCEdAq2/9/FzdUXV9lChoBkdAneEB+jM3ZWgHTegDaAhHQKt3D544ZMt1fZQoaAZHQJ0CIN/e+EhoB03oA2gIR0Cred2/8EV4dX2UKGgGR0CYdTE2YOUdaAdN6ANoCEdAq3uXfyf+THV9lChoBkdAmGeUbo8p1GgHTegDaAhHQKt8GIOYplV1fZQoaAZHQJzh/fgrH2hoB03oA2gIR0CrhV6po9LYdX2UKGgGR0Capg0/nnuBaAdN6ANoCEdAq4oZ6yB063V9lChoBkdAkSoG4mTkhmgHTegDaAhHQKuMO8FINEx1fZQoaAZHQJaGyFTNt65oB03oA2gIR0CrjLuLR8c/dX2UKGgGR0CVsf3EyckMaAdN6ANoCEdAq5P27voeP3V9lChoBkdAmwErp/wy7GgHTegDaAhHQKuW9iobXH11fZQoaAZHQJ5947yQPqdoB03oA2gIR0CrmLdsrNGFdX2UKGgGR0CdWFhJiAlOaAdN6ANoCEdAq5k87KaG6HV9lChoBkdAj9xOLJjlP2gHTegDaAhHQKuhMMgEEDB1fZQoaAZHQJC7fwPRRdhoB03oA2gIR0CrpaMZgogFdX2UKGgGR0CU5GWRA8jiaAdN6ANoCEdAq6iAbCJoCnV9lChoBkdAkwvz6N2ki2gHTegDaAhHQKupV531SO11fZQoaAZHQJZpm7QLNOdoB03oA2gIR0CrsOOv+wTudX2UKGgGR0CS7iPuG9HuaAdN6ANoCEdAq7OwmCyyEHV9lChoBkdAl4krH+6y0WgHTegDaAhHQKu1ZlRxcVx1fZQoaAZHQJTnx7v5P/JoB03oA2gIR0CrtehmoR7JdX2UKGgGR0CZhUGc4HX3aAdN6ANoCEdAq71EF+uvEHV9lChoBkdAnY3jB68g6mgHTegDaAhHQKvBAZVn27F1fZQoaAZHQJ5RcQBgeBBoB03oA2gIR0Crw6L4nF5wdX2UKGgGR0CZiVR4hUzbaAdN6ANoCEdAq8R0bgjyF3V9lChoBkdAmZ5Z8KG+K2gHTegDaAhHQKvNn5ylvZR1fZQoaAZHQJ/Gf4M4LkVoB03oA2gIR0Cr0HrMTviMdX2UKGgGR0Cajg3yI55raAdN6ANoCEdAq9IydvsJIHV9lChoBkdAnFqTYVZcLWgHTegDaAhHQKvSuTRIBil1fZQoaAZHQJ5/bIS13MZoB03oA2gIR0Cr2e2/JvHcdX2UKGgGR0Cf2iWBBiTdaAdN6ANoCEdAq9zPbqQiinV9lChoBkdAnQipuuRs/WgHTegDaAhHQKvfH27nPmh1fZQoaAZHQJ2gT82rGR5oB03oA2gIR0Cr3+QdS2pidX2UKGgGR0CYhHI2wV0taAdN6ANoCEdAq+pVGLDQ7nV9lChoBkdAnPsBDTjNp2gHTegDaAhHQKvtKWE9Mbp1fZQoaAZHQJ3QkEB8x9JoB03oA2gIR0Cr7uk74i5edX2UKGgGR0CYfksDnvDxaAdN6ANoCEdAq+9wa1kUbnV9lChoBkdAmigtTo+wDGgHTegDaAhHQKv2m/47A+J1fZQoaAZHQJtZ679Q40doB03oA2gIR0Cr+WvuG9HudX2UKGgGR0CdKLd/axoqaAdN6ANoCEdAq/ssuzyBkXV9lChoBkdAl0N8uez2OGgHTegDaAhHQKv7rtCRfWt1fZQoaAZHQJzE1DYywfRoB03oA2gIR0CsBrEH+qBFdX2UKGgGR0CXKWVMVUMoaAdN6ANoCEdArAo7S1E3KnV9lChoBkdAm4mj4+KTCGgHTegDaAhHQKwMDw0fozN1fZQoaAZHQJrF9KJ2t+1oB03oA2gIR0CsDJkI5YHPdX2UKGgGR0CdUCbb1yvLaAdN6ANoCEdArBPQT4+KTHV9lChoBkdAnjYvigkC3mgHTegDaAhHQKwWuRRMvh91fZQoaAZHQJoAGu3c581oB03oA2gIR0CsGHjvNNahdX2UKGgGR0CfLUhhpg1FaAdN6ANoCEdArBkI0XP7enV9lChoBkdAnohG8VYZEWgHTegDaAhHQKwiafDk2gp1fZQoaAZHQJ25UMnZ00ZoB03oA2gIR0CsJx8Bltj1dX2UKGgGR0CbiwyGBWgfaAdN6ANoCEdArCkIrjHXE3V9lChoBkdAm6CHpfQa72gHTegDaAhHQKwpjZB9kSV1fZQoaAZHQJ4WzoFFDv5oB03oA2gIR0CsMJ7D/EOzdX2UKGgGR0CTDJrsSkCWaAdN6ANoCEdArDNvcL0BfnV9lChoBkdAmWVePV/c32gHTegDaAhHQKw1LKOktVd1fZQoaAZHQJn59qWTouBoB03oA2gIR0CsNazBRAKOdX2UKGgGR0CaKgdLg4wRaAdN6ANoCEdArD09k6Lfk3V9lChoBkdAnJvwm3OObWgHTegDaAhHQKxBwhDgIhR1fZQoaAZHQJxOisU7CBRoB03oA2gIR0CsRK4rjHXFdX2UKGgGR0Ccz98NQTEjaAdN6ANoCEdArEWKPuG9H3V9lChoBkdAnvF7LEDQq2gHTegDaAhHQKxNZVFx4pt1fZQoaAZHQJzxETBZZB9oB03oA2gIR0CsUCdzfaYedX2UKGgGR0CeEnUB4lhPaAdN6ANoCEdArFHlBIFvAHV9lChoBkdAms1UqtozvmgHTegDaAhHQKxSan3L3bp1fZQoaAZHQJ06PV3EAHVoB03oA2gIR0CsWZGipNsWdX2UKGgGR0CfMVQnhKlIaAdN6ANoCEdArF0Ymb9ZR3V9lChoBkdAn2GjwYtQK2gHTegDaAhHQKxfun+AEuB1fZQoaAZHQJnKEoTfzjFoB03oA2gIR0CsYJWL5ylvdX2UKGgGR0Cc4tL8JlasaAdN6ANoCEdArGnyH0se4nV9lChoBkdAltdMo2GZeGgHTegDaAhHQKxs0YyfthN1fZQoaAZHQJgp/Ackt29oB03oA2gIR0Csbr6zeGfxdX2UKGgGR0CSDe0jkdWAaAdN6ANoCEdArG9SwY+B6XV9lChoBkdAnt9C/CZWrGgHTegDaAhHQKx2hGBFuvV1fZQoaAZHQJMx/HDJlrdoB03oA2gIR0CseVYsd1dPdX2UKGgGR0B9jkJBw++uaAdN6ANoCEdArHt9HJ9y93V9lChoBkdAe8vM5wOvuGgHTegDaAhHQKx8TpM6BAh1fZQoaAZHQIf/ki8nNPhoB03oA2gIR0Cshzpb+tKadX2UKGgGR0CXfKQRf4RFaAdN6ANoCEdArIoez4UN8XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc708419514949bbae39ed87e85458904785605ae8b3a89ca9fa89e04a67c67
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43ef7464a1cc022ae84957977d19ec563ca57a8b8b7916167b42c93a96051983
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28b312a280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28b312a310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28b312a3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28b312a430>", "_build": "<function ActorCriticPolicy._build at 0x7f28b312a4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f28b312a550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28b312a5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28b312a670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f28b312a700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28b312a790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28b312a820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28b312a8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f28b312f440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679233064005000100, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAINBLT9u2LM/uFY0vnY/jj/jlPW/2EXLPWBK4r6ivoS+U/QiPyaXmb1otc4+ta5kv3zInb8KbnA+Typtvs3BpD9Upou+CZw+v1j8Mr82RZ6/D0LAvrxiB7/cTQO/PFSbP5uoZT/MEei/iqYRPzQAg78qeoM/nQ+8P8Xogb7cfN4/nQJpv7hrVD/YXOq+ftOEv5LnFT/YMVZA0kVxPxUPCD4O46K/RMnwPp59jb7wcqe+BfYjvzdXlb5RyEO+DHbtP6zFvb4VMtU/CBJJv8NFFj6bqGU/9jINP4qmET80AIO/iUxtP6d2jzwW1AU/MqH6Pp22jD+5Q4I/sLCcvss+Kr9eXx8/6o4xvoT4UT/KlR4/gzpNP8SFl7/bDsk+gsa1v4LaNj/b62y/h4h4v02fRz8qf/i+AWFtPDVXGz+IvhPAm6hlP8wR6L+KphE/NACDv/bWjj6Pk5o/4Pz6PDB6xT8OhWg/jriYP4UZYj4iMUa/EmLYPviD4T9P2mg/uSupPqW+uz/ynOq+86HmPocMOr8wJ9g+fvIhv3ISuz5p1JQ/ek3jviyrUT4+uU2/5L+OPGyujr/2Mg0/iqYRPzQAg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABE74E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJYBvgAAAAB0u/i/AAAAANa40b0AAAAA3KrsPwAAAAAD8Ps9AAAAAHIC5j8AAAAAnL59vAAAAADpmui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFD5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAAHjL0AAAAAKZXkvwAAAACpWfs9AAAAAKO05D8AAAAAcERquwAAAAAifQBAAAAAANqrB74AAAAAZfLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHsgwbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBX8+s9AAAAAJWP+78AAAAAd4UGPgAAAABq1u4/AAAAAJpND74AAAAAR/XlPwAAAABwJ929AAAAADHM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB1Rk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAM+WHvQAAAADi0Nm/AAAAAM+IkDsAAAAAmYn1PwAAAABocKo9AAAAADgE9D8AAAAA2F1dPQAAAABM+f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZy+EVWS2aMAWyUTegDjAF0lEdAqyfhH7P6bnV9lChoBkdAnpBhJqZc9mgHTegDaAhHQKsovW1+iJx1fZQoaAZHQJxT3rgOz6doB03oA2gIR0CrMZrqt5lfdX2UKGgGR0CcgtZ4fOlgaAdN6ANoCEdAqzRaHymQ83V9lChoBkdAoDAiCxu89WgHTegDaAhHQKs2KJaaCtl1fZQoaAZHQJ5mN4LThHdoB03oA2gIR0CrNqbvgFX8dX2UKGgGR0CcPAZLIxQBaAdN6ANoCEdAqz24XQ+lj3V9lChoBkdAoA3Rpvgm7mgHTegDaAhHQKtAi2cawUx1fZQoaAZHQJrZR9NN8E5oB03oA2gIR0CrQtZ/kNnXdX2UKGgGR0CX03ib2Dg7aAdN6ANoCEdAq0OgH9m6G3V9lChoBkdAmUCKnNxEOWgHTegDaAhHQKtOFoi9qUN1fZQoaAZHQJ6QpsrNGExoB03oA2gIR0CrUORXXAdodX2UKGgGR0CZj53Ehq0uaAdN6ANoCEdAq1KZPRArx3V9lChoBkdAoDYFKsdT52gHTegDaAhHQKtTIDFId2h1fZQoaAZHQH3iKCxu89RoB03oA2gIR0CrWk0DdP+GdX2UKGgGR0CZURpr1uiwaAdN6ANoCEdAq11MV+I/JXV9lChoBkdAnR7euaF23mgHTegDaAhHQKtfCeUY8+11fZQoaAZHQJ7RW1a4c3loB03oA2gIR0CrX4wVbiZOdX2UKGgGR0CeT4ZOSGJvaAdN6ANoCEdAq2pieCkGinV9lChoBkdAm4Qeuieum2gHTegDaAhHQKttw9r433p1fZQoaAZHQJ5IsfT1CgNoB03oA2gIR0Crb387yQPqdX2UKGgGR0CeClJTl1bJaAdN6ANoCEdAq2/9/FzdUXV9lChoBkdAneEB+jM3ZWgHTegDaAhHQKt3D544ZMt1fZQoaAZHQJ0CIN/e+EhoB03oA2gIR0Cred2/8EV4dX2UKGgGR0CYdTE2YOUdaAdN6ANoCEdAq3uXfyf+THV9lChoBkdAmGeUbo8p1GgHTegDaAhHQKt8GIOYplV1fZQoaAZHQJzh/fgrH2hoB03oA2gIR0CrhV6po9LYdX2UKGgGR0Capg0/nnuBaAdN6ANoCEdAq4oZ6yB063V9lChoBkdAkSoG4mTkhmgHTegDaAhHQKuMO8FINEx1fZQoaAZHQJaGyFTNt65oB03oA2gIR0CrjLuLR8c/dX2UKGgGR0CVsf3EyckMaAdN6ANoCEdAq5P27voeP3V9lChoBkdAmwErp/wy7GgHTegDaAhHQKuW9iobXH11fZQoaAZHQJ5947yQPqdoB03oA2gIR0CrmLdsrNGFdX2UKGgGR0CdWFhJiAlOaAdN6ANoCEdAq5k87KaG6HV9lChoBkdAj9xOLJjlP2gHTegDaAhHQKuhMMgEEDB1fZQoaAZHQJC7fwPRRdhoB03oA2gIR0CrpaMZgogFdX2UKGgGR0CU5GWRA8jiaAdN6ANoCEdAq6iAbCJoCnV9lChoBkdAkwvz6N2ki2gHTegDaAhHQKupV531SO11fZQoaAZHQJZpm7QLNOdoB03oA2gIR0CrsOOv+wTudX2UKGgGR0CS7iPuG9HuaAdN6ANoCEdAq7OwmCyyEHV9lChoBkdAl4krH+6y0WgHTegDaAhHQKu1ZlRxcVx1fZQoaAZHQJTnx7v5P/JoB03oA2gIR0CrtehmoR7JdX2UKGgGR0CZhUGc4HX3aAdN6ANoCEdAq71EF+uvEHV9lChoBkdAnY3jB68g6mgHTegDaAhHQKvBAZVn27F1fZQoaAZHQJ5RcQBgeBBoB03oA2gIR0Crw6L4nF5wdX2UKGgGR0CZiVR4hUzbaAdN6ANoCEdAq8R0bgjyF3V9lChoBkdAmZ5Z8KG+K2gHTegDaAhHQKvNn5ylvZR1fZQoaAZHQJ/Gf4M4LkVoB03oA2gIR0Cr0HrMTviMdX2UKGgGR0Cajg3yI55raAdN6ANoCEdAq9IydvsJIHV9lChoBkdAnFqTYVZcLWgHTegDaAhHQKvSuTRIBil1fZQoaAZHQJ5/bIS13MZoB03oA2gIR0Cr2e2/JvHcdX2UKGgGR0Cf2iWBBiTdaAdN6ANoCEdAq9zPbqQiinV9lChoBkdAnQipuuRs/WgHTegDaAhHQKvfH27nPmh1fZQoaAZHQJ2gT82rGR5oB03oA2gIR0Cr3+QdS2pidX2UKGgGR0CYhHI2wV0taAdN6ANoCEdAq+pVGLDQ7nV9lChoBkdAnPsBDTjNp2gHTegDaAhHQKvtKWE9Mbp1fZQoaAZHQJ3QkEB8x9JoB03oA2gIR0Cr7uk74i5edX2UKGgGR0CYfksDnvDxaAdN6ANoCEdAq+9wa1kUbnV9lChoBkdAmigtTo+wDGgHTegDaAhHQKv2m/47A+J1fZQoaAZHQJtZ679Q40doB03oA2gIR0Cr+WvuG9HudX2UKGgGR0CdKLd/axoqaAdN6ANoCEdAq/ssuzyBkXV9lChoBkdAl0N8uez2OGgHTegDaAhHQKv7rtCRfWt1fZQoaAZHQJzE1DYywfRoB03oA2gIR0CsBrEH+qBFdX2UKGgGR0CXKWVMVUMoaAdN6ANoCEdArAo7S1E3KnV9lChoBkdAm4mj4+KTCGgHTegDaAhHQKwMDw0fozN1fZQoaAZHQJrF9KJ2t+1oB03oA2gIR0CsDJkI5YHPdX2UKGgGR0CdUCbb1yvLaAdN6ANoCEdArBPQT4+KTHV9lChoBkdAnjYvigkC3mgHTegDaAhHQKwWuRRMvh91fZQoaAZHQJoAGu3c581oB03oA2gIR0CsGHjvNNahdX2UKGgGR0CfLUhhpg1FaAdN6ANoCEdArBkI0XP7enV9lChoBkdAnohG8VYZEWgHTegDaAhHQKwiafDk2gp1fZQoaAZHQJ25UMnZ00ZoB03oA2gIR0CsJx8Bltj1dX2UKGgGR0CbiwyGBWgfaAdN6ANoCEdArCkIrjHXE3V9lChoBkdAm6CHpfQa72gHTegDaAhHQKwpjZB9kSV1fZQoaAZHQJ4WzoFFDv5oB03oA2gIR0CsMJ7D/EOzdX2UKGgGR0CTDJrsSkCWaAdN6ANoCEdArDNvcL0BfnV9lChoBkdAmWVePV/c32gHTegDaAhHQKw1LKOktVd1fZQoaAZHQJn59qWTouBoB03oA2gIR0CsNazBRAKOdX2UKGgGR0CaKgdLg4wRaAdN6ANoCEdArD09k6Lfk3V9lChoBkdAnJvwm3OObWgHTegDaAhHQKxBwhDgIhR1fZQoaAZHQJxOisU7CBRoB03oA2gIR0CsRK4rjHXFdX2UKGgGR0Ccz98NQTEjaAdN6ANoCEdArEWKPuG9H3V9lChoBkdAnvF7LEDQq2gHTegDaAhHQKxNZVFx4pt1fZQoaAZHQJzxETBZZB9oB03oA2gIR0CsUCdzfaYedX2UKGgGR0CeEnUB4lhPaAdN6ANoCEdArFHlBIFvAHV9lChoBkdAms1UqtozvmgHTegDaAhHQKxSan3L3bp1fZQoaAZHQJ06PV3EAHVoB03oA2gIR0CsWZGipNsWdX2UKGgGR0CfMVQnhKlIaAdN6ANoCEdArF0Ymb9ZR3V9lChoBkdAn2GjwYtQK2gHTegDaAhHQKxfun+AEuB1fZQoaAZHQJnKEoTfzjFoB03oA2gIR0CsYJWL5ylvdX2UKGgGR0Cc4tL8JlasaAdN6ANoCEdArGnyH0se4nV9lChoBkdAltdMo2GZeGgHTegDaAhHQKxs0YyfthN1fZQoaAZHQJgp/Ackt29oB03oA2gIR0Csbr6zeGfxdX2UKGgGR0CSDe0jkdWAaAdN6ANoCEdArG9SwY+B6XV9lChoBkdAnt9C/CZWrGgHTegDaAhHQKx2hGBFuvV1fZQoaAZHQJMx/HDJlrdoB03oA2gIR0CseVYsd1dPdX2UKGgGR0B9jkJBw++uaAdN6ANoCEdArHt9HJ9y93V9lChoBkdAe8vM5wOvuGgHTegDaAhHQKx8TpM6BAh1fZQoaAZHQIf/ki8nNPhoB03oA2gIR0Cshzpb+tKadX2UKGgGR0CXfKQRf4RFaAdN6ANoCEdArIoez4UN8XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4a75277197ffee9a8f8e7dfd51f49eeef167343ebc863372f60f4a995c6d623
3
+ size 1042108
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1200.2336581371346, "std_reward": 311.6972607205415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T14:39:58.688410"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e224b86a9d6edc7061933444913a4609b408fe7e8f8eb7bb59a55b693eda0a6a
3
+ size 2136