qc903113684
commited on
Commit
•
6c1dff2
1
Parent(s):
ed03456
Update README.md
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ license: apache-2.0
|
|
4 |
|
5 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/HJVKr4UFL51aZ3uqQkgrm.png)
|
6 |
|
7 |
-
|
8 |
|
9 |
ResNet is a network with a better effect on classification problems in the ImageNet competition.
|
10 |
|
@@ -12,7 +12,12 @@ It introduces the concept of residual learning, protects the integrity of inform
|
|
12 |
|
13 |
The model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
|
18 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
@@ -26,7 +31,7 @@ The model can be found [here](https://github.com/pytorch/vision/blob/main/torchv
|
|
26 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|1.4|INT16|NPU|[model download](https://huggingface.co/aidlux/ResNet-50/blob/main/Models/QCS8550/resnet50_int16_htp_snpe2.dlc)|
|
27 |
|AidBox GS865|QCS8250|SNPE|ResNet-50|224|9|INT8|NPU|[model download]()|
|
28 |
|
29 |
-
**
|
30 |
|
31 |
Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
|
32 |
|
@@ -44,4 +49,20 @@ The demo model conversion step on AIMO can be found blow:
|
|
44 |
|APLUX QCS8550|QCS8550|QNN|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_qnn_int16.png)|
|
45 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT8|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int8.png)|
|
46 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int16.png)|
|
47 |
-
|AidBox GS865|QCS8250|SNPE|ResNet-50|224|INT8|NPU|[View Steps]()|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/HJVKr4UFL51aZ3uqQkgrm.png)
|
6 |
|
7 |
+
# ResNet-50: Image Classification
|
8 |
|
9 |
ResNet is a network with a better effect on classification problems in the ImageNet competition.
|
10 |
|
|
|
12 |
|
13 |
The model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
|
14 |
|
15 |
+
## CONTENTS
|
16 |
+
- [Performance](#performance)
|
17 |
+
- [Model Conversion](#model-conversion)
|
18 |
+
- [Inference](#inference)
|
19 |
+
|
20 |
+
**Performance**
|
21 |
|
22 |
|Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
|
23 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
|
|
31 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|1.4|INT16|NPU|[model download](https://huggingface.co/aidlux/ResNet-50/blob/main/Models/QCS8550/resnet50_int16_htp_snpe2.dlc)|
|
32 |
|AidBox GS865|QCS8250|SNPE|ResNet-50|224|9|INT8|NPU|[model download]()|
|
33 |
|
34 |
+
**Models Conversion**
|
35 |
|
36 |
Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
|
37 |
|
|
|
49 |
|APLUX QCS8550|QCS8550|QNN|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_qnn_int16.png)|
|
50 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT8|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int8.png)|
|
51 |
|APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int16.png)|
|
52 |
+
|AidBox GS865|QCS8250|SNPE|ResNet-50|224|INT8|NPU|[View Steps]()|
|
53 |
+
|
54 |
+
## Inference
|
55 |
+
|
56 |
+
### Step1: convert model
|
57 |
+
|
58 |
+
a. Prepare source model in onnx format. The source model can be found [here](https://huggingface.co/aplux/ResNet-50/blob/main/resnet50.onnx).
|
59 |
+
|
60 |
+
b. Login [AIMO](https://aidlux.com/en/product/aimo) and convert source model to target format. The model conversion step can follow **AIMO Conversion Step** in [Model Conversion Sheet](#model-conversion).
|
61 |
+
|
62 |
+
c. After conversion task done, download target model file.
|
63 |
+
|
64 |
+
### Step2: install AidLite SDK
|
65 |
+
|
66 |
+
The installation guide of AidLite SDK can be found [here](https://huggingface.co/datasets/aplux/AIToolKit/blob/main/AidLite%20SDK%20Development%20Documents.md#installation).
|
67 |
+
|
68 |
+
### Step3: run demo program
|