qc903113684 commited on
Commit
6c1dff2
·
verified ·
1 Parent(s): ed03456

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -4
README.md CHANGED
@@ -4,7 +4,7 @@ license: apache-2.0
4
 
5
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/HJVKr4UFL51aZ3uqQkgrm.png)
6
 
7
- <h1>ResNet-50: Image Classification</h1>
8
 
9
  ResNet is a network with a better effect on classification problems in the ImageNet competition.
10
 
@@ -12,7 +12,12 @@ It introduces the concept of residual learning, protects the integrity of inform
12
 
13
  The model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
14
 
15
- **Performance on devices**
 
 
 
 
 
16
 
17
  |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
18
  |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
@@ -26,7 +31,7 @@ The model can be found [here](https://github.com/pytorch/vision/blob/main/torchv
26
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|1.4|INT16|NPU|[model download](https://huggingface.co/aidlux/ResNet-50/blob/main/Models/QCS8550/resnet50_int16_htp_snpe2.dlc)|
27
  |AidBox GS865|QCS8250|SNPE|ResNet-50|224|9|INT8|NPU|[model download]()|
28
 
29
- **Demo models conversion**
30
 
31
  Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
32
 
@@ -44,4 +49,20 @@ The demo model conversion step on AIMO can be found blow:
44
  |APLUX QCS8550|QCS8550|QNN|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_qnn_int16.png)|
45
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT8|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int8.png)|
46
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int16.png)|
47
- |AidBox GS865|QCS8250|SNPE|ResNet-50|224|INT8|NPU|[View Steps]()|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c1fef5b9d81735a12c3fcc/HJVKr4UFL51aZ3uqQkgrm.png)
6
 
7
+ # ResNet-50: Image Classification
8
 
9
  ResNet is a network with a better effect on classification problems in the ImageNet competition.
10
 
 
12
 
13
  The model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
14
 
15
+ ## CONTENTS
16
+ - [Performance](#performance)
17
+ - [Model Conversion](#model-conversion)
18
+ - [Inference](#inference)
19
+
20
+ **Performance**
21
 
22
  |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
23
  |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
 
31
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|1.4|INT16|NPU|[model download](https://huggingface.co/aidlux/ResNet-50/blob/main/Models/QCS8550/resnet50_int16_htp_snpe2.dlc)|
32
  |AidBox GS865|QCS8250|SNPE|ResNet-50|224|9|INT8|NPU|[model download]()|
33
 
34
+ **Models Conversion**
35
 
36
  Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
37
 
 
49
  |APLUX QCS8550|QCS8550|QNN|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_qnn_int16.png)|
50
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT8|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int8.png)|
51
  |APLUX QCS8550|QCS8550|SNPE|ResNet-50|224|INT16|NPU|[View Steps](https://huggingface.co/aplux/ResNet-50/blob/main/AIMO/QCS8550/aimo_resnet50_snpe_int16.png)|
52
+ |AidBox GS865|QCS8250|SNPE|ResNet-50|224|INT8|NPU|[View Steps]()|
53
+
54
+ ## Inference
55
+
56
+ ### Step1: convert model
57
+
58
+ a. Prepare source model in onnx format. The source model can be found [here](https://huggingface.co/aplux/ResNet-50/blob/main/resnet50.onnx).
59
+
60
+ b. Login [AIMO](https://aidlux.com/en/product/aimo) and convert source model to target format. The model conversion step can follow **AIMO Conversion Step** in [Model Conversion Sheet](#model-conversion).
61
+
62
+ c. After conversion task done, download target model file.
63
+
64
+ ### Step2: install AidLite SDK
65
+
66
+ The installation guide of AidLite SDK can be found [here](https://huggingface.co/datasets/aplux/AIToolKit/blob/main/AidLite%20SDK%20Development%20Documents.md#installation).
67
+
68
+ ### Step3: run demo program