apetrenko commited on
Commit
f25e361
1 Parent(s): 398d7e8

Upload . with huggingface_hub

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1673494048.brain1.usc.edu ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bca7a1c73a35092c6cdbb661b84cb9147c6377b5d2904872cecd045640458cc
3
+ size 82406
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: walker2d
15
+ type: walker2d
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 5459.17 +/- 2198.74
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **walker2d** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r apetrenko/sample_factory_brax_walker2d
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m sf_examples.brax.enjoy_brax --algo=APPO --env=walker2d --train_dir=./train_dir --experiment=sample_factory_brax_walker2d
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m sf_examples.brax.train_brax --algo=APPO --env=walker2d --train_dir=./train_dir --experiment=sample_factory_brax_walker2d --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000012096_79298560_reward_6510.601.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58d7763d594c03f5451a12411ea120e61ea3780548750d961ef2c943b1af80df
3
+ size 570871
checkpoint_p0/checkpoint_000012096_79298560.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cb90a861093886fbbb0fadc5bcc93d7b2a779d5e2ad9030aa633b45718782f0
3
+ size 571183
checkpoint_p0/checkpoint_000015266_100073472.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60a75e3590a4533206876a72a1bc2b5d318be1d12c00986a60f815a0400fd69
3
+ size 571183
config.json ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "walker2d",
5
+ "experiment": "06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5",
6
+ "train_dir": "./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": 2322090,
10
+ "num_policies": 1,
11
+ "async_rl": false,
12
+ "serial_mode": true,
13
+ "batched_sampling": true,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 1,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 1,
19
+ "num_envs_per_worker": 1,
20
+ "batch_size": 32768,
21
+ "num_batches_per_epoch": 2,
22
+ "num_epochs": 5,
23
+ "rollout": 32,
24
+ "recurrence": 1,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 0.01,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": true,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.0,
32
+ "value_loss_coeff": 2.0,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "entropy",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.2,
37
+ "ppo_clip_value": 1.0,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 1.0,
46
+ "learning_rate": 0.0003,
47
+ "lr_schedule": "kl_adaptive_epoch",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.002,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 1.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [
58
+ 0
59
+ ],
60
+ "set_workers_cpu_affinity": true,
61
+ "force_envs_single_thread": false,
62
+ "default_niceness": 0,
63
+ "log_to_file": true,
64
+ "experiment_summaries_interval": 10,
65
+ "flush_summaries_interval": 30,
66
+ "stats_avg": 100,
67
+ "summaries_use_frameskip": true,
68
+ "heartbeat_interval": 20,
69
+ "heartbeat_reporting_interval": 180,
70
+ "train_for_env_steps": 100000000,
71
+ "train_for_seconds": 10000000000,
72
+ "save_every_sec": 120,
73
+ "keep_checkpoints": 2,
74
+ "load_checkpoint_kind": "latest",
75
+ "save_milestones_sec": -1,
76
+ "save_best_every_sec": 5,
77
+ "save_best_metric": "reward",
78
+ "save_best_after": 5000000,
79
+ "benchmark": false,
80
+ "encoder_mlp_layers": [
81
+ 256,
82
+ 128,
83
+ 64
84
+ ],
85
+ "encoder_conv_architecture": "convnet_simple",
86
+ "encoder_conv_mlp_layers": [
87
+ 512
88
+ ],
89
+ "use_rnn": false,
90
+ "rnn_size": 512,
91
+ "rnn_type": "gru",
92
+ "rnn_num_layers": 1,
93
+ "decoder_mlp_layers": [],
94
+ "nonlinearity": "elu",
95
+ "policy_initialization": "torch_default",
96
+ "policy_init_gain": 1.0,
97
+ "actor_critic_share_weights": true,
98
+ "adaptive_stddev": false,
99
+ "continuous_tanh_scale": 0.0,
100
+ "initial_stddev": 1.0,
101
+ "use_env_info_cache": false,
102
+ "env_gpu_actions": true,
103
+ "env_gpu_observations": true,
104
+ "env_frameskip": 1,
105
+ "env_framestack": 1,
106
+ "pixel_format": "CHW",
107
+ "use_record_episode_statistics": false,
108
+ "with_wandb": true,
109
+ "wandb_user": null,
110
+ "wandb_project": "sample_factory",
111
+ "wandb_group": null,
112
+ "wandb_job_type": "SF",
113
+ "wandb_tags": [],
114
+ "with_pbt": false,
115
+ "pbt_mix_policies_in_one_env": true,
116
+ "pbt_period_env_steps": 5000000,
117
+ "pbt_start_mutation": 20000000,
118
+ "pbt_replace_fraction": 0.3,
119
+ "pbt_mutation_rate": 0.15,
120
+ "pbt_replace_reward_gap": 0.1,
121
+ "pbt_replace_reward_gap_absolute": 1e-06,
122
+ "pbt_optimize_gamma": false,
123
+ "pbt_target_objective": "true_objective",
124
+ "pbt_perturb_min": 1.1,
125
+ "pbt_perturb_max": 1.5,
126
+ "env_agents": 2048,
127
+ "clamp_actions": false,
128
+ "clamp_rew_obs": false,
129
+ "command_line": "--actor_worker_gpus 0 --wandb_project=sample_factory --with_wandb=True --seed=2322090 --env=walker2d --use_rnn=False --num_epochs=5 --experiment=06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5 --train_dir=./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm",
130
+ "cli_args": {
131
+ "env": "walker2d",
132
+ "experiment": "06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5",
133
+ "train_dir": "./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm",
134
+ "seed": 2322090,
135
+ "num_epochs": 5,
136
+ "actor_worker_gpus": [
137
+ 0
138
+ ],
139
+ "use_rnn": false,
140
+ "with_wandb": true,
141
+ "wandb_project": "sample_factory"
142
+ },
143
+ "git_hash": "6aa87f2d416b9fad874b299d864a522c887c238a",
144
+ "git_repo_name": "git@github.com:alex-petrenko/sample-factory.git",
145
+ "train_script": "sf_examples.brax.train_brax",
146
+ "wandb_unique_id": "06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5_20230111_192722_009099"
147
+ }
git.diff ADDED
File without changes
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:079c0cabb6ad9a946bdf746ad4c134ad0090319fe4f7f059747280a4adaa5575
3
+ size 1782125
sf_log.txt ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-01-11 19:27:33,824][2153185] Saving configuration to ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/config.json...
2
+ [2023-01-11 19:27:34,003][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3
+ [2023-01-11 19:27:34,005][2153185] Rollout worker 0 uses device cuda:0
4
+ [2023-01-11 19:27:34,006][2153185] In synchronous mode, we only accumulate one batch. Setting num_batches_to_accumulate to 1
5
+ [2023-01-11 19:27:34,067][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
6
+ [2023-01-11 19:27:34,068][2153185] InferenceWorker_p0-w0: min num requests: 1
7
+ [2023-01-11 19:27:34,069][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
8
+ [2023-01-11 19:27:34,070][2153185] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1
9
+ [2023-01-11 19:27:34,070][2153185] Setting fixed seed 2322090
10
+ [2023-01-11 19:27:34,071][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2023-01-11 19:27:34,071][2153185] Initializing actor-critic model on device cuda:0
12
+ [2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (17,)
13
+ [2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (1,)
14
+ [2023-01-11 19:27:34,154][2153185] Created Actor Critic model with architecture:
15
+ [2023-01-11 19:27:34,154][2153185] ActorCriticSharedWeights(
16
+ (obs_normalizer): ObservationNormalizer(
17
+ (running_mean_std): RunningMeanStdDictInPlace(
18
+ (running_mean_std): ModuleDict(
19
+ (obs): RunningMeanStdInPlace()
20
+ )
21
+ )
22
+ )
23
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
24
+ (encoder): MultiInputEncoder(
25
+ (encoders): ModuleDict(
26
+ (obs): MlpEncoder(
27
+ (mlp_head): RecursiveScriptModule(
28
+ original_name=Sequential
29
+ (0): RecursiveScriptModule(original_name=Linear)
30
+ (1): RecursiveScriptModule(original_name=ELU)
31
+ (2): RecursiveScriptModule(original_name=Linear)
32
+ (3): RecursiveScriptModule(original_name=ELU)
33
+ (4): RecursiveScriptModule(original_name=Linear)
34
+ (5): RecursiveScriptModule(original_name=ELU)
35
+ )
36
+ )
37
+ )
38
+ )
39
+ (core): ModelCoreIdentity()
40
+ (decoder): MlpDecoder(
41
+ (mlp): Identity()
42
+ )
43
+ (critic_linear): Linear(in_features=64, out_features=1, bias=True)
44
+ (action_parameterization): ActionParameterizationContinuousNonAdaptiveStddev(
45
+ (distribution_linear): Linear(in_features=64, out_features=6, bias=True)
46
+ )
47
+ )
48
+ [2023-01-11 19:27:34,156][2153185] Using optimizer <class 'torch.optim.adam.Adam'>
49
+ [2023-01-11 19:27:34,159][2153185] No checkpoints found
50
+ [2023-01-11 19:27:34,160][2153185] Did not load from checkpoint, starting from scratch!
51
+ [2023-01-11 19:27:34,161][2153185] Initialized policy 0 weights for model version 0
52
+ [2023-01-11 19:27:34,161][2153185] LearnerWorker_p0 finished initialization!
53
+ [2023-01-11 19:27:34,162][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
54
+ [2023-01-11 19:27:34,167][2153185] Inference worker 0-0 is ready!
55
+ [2023-01-11 19:27:34,167][2153185] All inference workers are ready! Signal rollout workers to start!
56
+ [2023-01-11 19:27:34,168][2153185] EnvRunner 0-0 uses policy 0
57
+ [2023-01-11 19:27:35,507][2153185] Resetting env <VectorGymWrapper instance> with 2048 parallel agents...
58
+ [2023-01-11 19:27:38,375][2153185] reset() done, obs.shape=torch.Size([2048, 17])!
59
+ [2023-01-11 19:27:47,676][2153185] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
60
+ [2023-01-11 19:27:56,420][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
61
+ [2023-01-11 19:27:56,424][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 234.1. Samples: 4096. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
62
+ [2023-01-11 19:27:56,429][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 468.0. Samples: 6144. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
63
+ [2023-01-11 19:27:56,432][2153185] Heartbeat connected on Batcher_0
64
+ [2023-01-11 19:27:56,432][2153185] Heartbeat connected on LearnerWorker_p0
65
+ [2023-01-11 19:27:56,432][2153185] Heartbeat connected on InferenceWorker_p0-w0
66
+ [2023-01-11 19:27:56,432][2153185] Heartbeat connected on RolloutWorker_w0
67
+ [2023-01-11 19:27:58,473][2153185] Fps is (10 sec: 127937.9, 60 sec: 24280.7, 300 sec: 24280.7). Total num frames: 262144. Throughput: 0: 15365.1. Samples: 167936. Policy #0 lag: (min: 2.0, avg: 2.0, max: 2.0)
68
+ [2023-01-11 19:27:58,474][2153185] Avg episode reward: [(0, '23.990')]
69
+ [2023-01-11 19:28:03,423][2153185] Fps is (10 sec: 318590.1, 60 sec: 141502.0, 300 sec: 141502.0). Total num frames: 2228224. Throughput: 0: 87268.2. Samples: 1376256. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
70
+ [2023-01-11 19:28:03,424][2153185] Avg episode reward: [(0, '618.064')]
71
+ [2023-01-11 19:28:08,424][2153185] Fps is (10 sec: 381986.4, 60 sec: 195844.4, 300 sec: 195844.4). Total num frames: 4063232. Throughput: 0: 174917.4. Samples: 3631104. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
72
+ [2023-01-11 19:28:08,425][2153185] Avg episode reward: [(0, '630.121')]
73
+ [2023-01-11 19:28:13,422][2153185] Fps is (10 sec: 367046.5, 60 sec: 229095.9, 300 sec: 229095.9). Total num frames: 5898240. Throughput: 0: 227027.7. Samples: 5847040. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
74
+ [2023-01-11 19:28:13,423][2153185] Avg episode reward: [(0, '783.157')]
75
+ [2023-01-11 19:28:13,483][2153185] Saving new best policy, reward=783.157!
76
+ [2023-01-11 19:28:18,424][2153185] Fps is (10 sec: 373558.6, 60 sec: 253642.4, 300 sec: 253642.4). Total num frames: 7798784. Throughput: 0: 227065.9. Samples: 6983680. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
77
+ [2023-01-11 19:28:18,424][2153185] Avg episode reward: [(0, '2312.752')]
78
+ [2023-01-11 19:28:18,432][2153185] Saving new best policy, reward=2312.752!
79
+ [2023-01-11 19:28:23,431][2153185] Fps is (10 sec: 379766.5, 60 sec: 271273.9, 300 sec: 271273.9). Total num frames: 9699328. Throughput: 0: 258386.1. Samples: 9240576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
80
+ [2023-01-11 19:28:23,432][2153185] Avg episode reward: [(0, '2002.332')]
81
+ [2023-01-11 19:28:28,423][2153185] Fps is (10 sec: 373562.0, 60 sec: 283072.2, 300 sec: 283072.2). Total num frames: 11534336. Throughput: 0: 358297.9. Samples: 11468800. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0)
82
+ [2023-01-11 19:28:28,424][2153185] Avg episode reward: [(0, '2368.916')]
83
+ [2023-01-11 19:28:28,429][2153185] Saving new best policy, reward=2368.916!
84
+ [2023-01-11 19:28:33,443][2153185] Fps is (10 sec: 373110.6, 60 sec: 293551.7, 300 sec: 293551.7). Total num frames: 13434880. Throughput: 0: 339901.9. Samples: 12587008. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0)
85
+ [2023-01-11 19:28:33,444][2153185] Avg episode reward: [(0, '2996.578')]
86
+ [2023-01-11 19:28:33,446][2153185] Saving new best policy, reward=2996.578!
87
+ [2023-01-11 19:28:38,422][2153185] Fps is (10 sec: 373599.0, 60 sec: 300909.4, 300 sec: 300909.4). Total num frames: 15269888. Throughput: 0: 352559.6. Samples: 14811136. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
88
+ [2023-01-11 19:28:38,423][2153185] Avg episode reward: [(0, '3076.930')]
89
+ [2023-01-11 19:28:38,431][2153185] Saving new best policy, reward=3076.930!
90
+ [2023-01-11 19:28:43,424][2153185] Fps is (10 sec: 367721.8, 60 sec: 363906.9, 300 sec: 306830.4). Total num frames: 17104896. Throughput: 0: 375696.5. Samples: 17055744. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
91
+ [2023-01-11 19:28:43,424][2153185] Avg episode reward: [(0, '3859.353')]
92
+ [2023-01-11 19:28:43,428][2153185] Saving new best policy, reward=3859.353!
93
+ [2023-01-11 19:28:48,422][2153185] Fps is (10 sec: 373566.4, 60 sec: 365502.6, 300 sec: 312869.9). Total num frames: 19005440. Throughput: 0: 372839.0. Samples: 18153472. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
94
+ [2023-01-11 19:28:48,423][2153185] Avg episode reward: [(0, '3764.592')]
95
+ [2023-01-11 19:28:53,424][2153185] Fps is (10 sec: 373543.7, 60 sec: 365657.5, 300 sec: 316977.7). Total num frames: 20840448. Throughput: 0: 373417.6. Samples: 20434944. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
96
+ [2023-01-11 19:28:53,425][2153185] Avg episode reward: [(0, '4154.622')]
97
+ [2023-01-11 19:28:53,429][2153185] Saving new best policy, reward=4154.622!
98
+ [2023-01-11 19:28:58,456][2153185] Fps is (10 sec: 372296.1, 60 sec: 374754.2, 300 sec: 321294.3). Total num frames: 22740992. Throughput: 0: 373094.6. Samples: 22648832. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
99
+ [2023-01-11 19:28:58,457][2153185] Avg episode reward: [(0, '4481.427')]
100
+ [2023-01-11 19:28:58,463][2153185] Saving new best policy, reward=4481.427!
101
+ [2023-01-11 19:29:03,470][2153185] Fps is (10 sec: 384889.5, 60 sec: 374357.4, 300 sec: 325979.1). Total num frames: 24707072. Throughput: 0: 373080.5. Samples: 23789568. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
102
+ [2023-01-11 19:29:03,471][2153185] Avg episode reward: [(0, '4315.631')]
103
+ [2023-01-11 19:29:08,424][2153185] Fps is (10 sec: 381321.0, 60 sec: 374645.7, 300 sec: 328704.5). Total num frames: 26542080. Throughput: 0: 375071.6. Samples: 26116096. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
104
+ [2023-01-11 19:29:08,425][2153185] Avg episode reward: [(0, '5075.545')]
105
+ [2023-01-11 19:29:08,433][2153185] Saving new best policy, reward=5075.545!
106
+ [2023-01-11 19:29:12,089][2153185] Early stopping after 3 epochs (6 sgd steps), loss delta 0.0000006
107
+ [2023-01-11 19:29:13,468][2153185] Fps is (10 sec: 380166.0, 60 sec: 376542.0, 300 sec: 332294.2). Total num frames: 28508160. Throughput: 0: 375819.4. Samples: 28397568. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
108
+ [2023-01-11 19:29:13,469][2153185] Avg episode reward: [(0, '4851.746')]
109
+ [2023-01-11 19:29:17,083][2153185] Early stopping after 5 epochs (10 sgd steps), loss delta 0.0000005
110
+ [2023-01-11 19:29:18,424][2153185] Fps is (10 sec: 380103.1, 60 sec: 375736.5, 300 sec: 334368.5). Total num frames: 30343168. Throughput: 0: 377264.1. Samples: 29556736. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
111
+ [2023-01-11 19:29:18,425][2153185] Avg episode reward: [(0, '3804.353')]
112
+ [2023-01-11 19:29:23,430][2153185] Fps is (10 sec: 374981.1, 60 sec: 375744.9, 300 sec: 336735.2). Total num frames: 32243712. Throughput: 0: 377128.2. Samples: 31784960. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
113
+ [2023-01-11 19:29:23,431][2153185] Avg episode reward: [(0, '4149.015')]
114
+ [2023-01-11 19:29:28,424][2153185] Fps is (10 sec: 373559.1, 60 sec: 375736.0, 300 sec: 338258.5). Total num frames: 34078720. Throughput: 0: 376827.7. Samples: 34013184. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
115
+ [2023-01-11 19:29:28,425][2153185] Avg episode reward: [(0, '4615.276')]
116
+ [2023-01-11 19:29:28,433][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth...
117
+ [2023-01-11 19:29:33,423][2153185] Fps is (10 sec: 373832.6, 60 sec: 375866.1, 300 sec: 340240.8). Total num frames: 35979264. Throughput: 0: 377460.9. Samples: 35139584. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
118
+ [2023-01-11 19:29:33,424][2153185] Avg episode reward: [(0, '5411.330')]
119
+ [2023-01-11 19:29:33,427][2153185] Saving new best policy, reward=5411.330!
120
+ [2023-01-11 19:29:38,480][2153185] Fps is (10 sec: 378011.1, 60 sec: 376472.7, 300 sec: 341866.0). Total num frames: 37879808. Throughput: 0: 376411.6. Samples: 37394432. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
121
+ [2023-01-11 19:29:38,480][2153185] Avg episode reward: [(0, '5203.336')]
122
+ [2023-01-11 19:29:43,422][2153185] Fps is (10 sec: 373588.1, 60 sec: 376841.2, 300 sec: 343121.6). Total num frames: 39714816. Throughput: 0: 378071.0. Samples: 39649280. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
123
+ [2023-01-11 19:29:43,423][2153185] Avg episode reward: [(0, '5195.713')]
124
+ [2023-01-11 19:29:48,444][2153185] Fps is (10 sec: 374897.6, 60 sec: 376695.4, 300 sec: 344591.4). Total num frames: 41615360. Throughput: 0: 377415.6. Samples: 40763392. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
125
+ [2023-01-11 19:29:48,444][2153185] Avg episode reward: [(0, '4986.651')]
126
+ [2023-01-11 19:29:53,424][2153185] Fps is (10 sec: 373487.3, 60 sec: 376831.7, 300 sec: 345536.9). Total num frames: 43450368. Throughput: 0: 375558.6. Samples: 43016192. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
127
+ [2023-01-11 19:29:53,425][2153185] Avg episode reward: [(0, '5789.914')]
128
+ [2023-01-11 19:29:53,428][2153185] Saving new best policy, reward=5789.914!
129
+ [2023-01-11 19:29:58,424][2153185] Fps is (10 sec: 374311.5, 60 sec: 377034.7, 300 sec: 346859.9). Total num frames: 45350912. Throughput: 0: 375659.2. Samples: 45285376. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
130
+ [2023-01-11 19:29:58,424][2153185] Avg episode reward: [(0, '5175.173')]
131
+ [2023-01-11 19:30:03,424][2153185] Fps is (10 sec: 373562.6, 60 sec: 374936.3, 300 sec: 347601.4). Total num frames: 47185920. Throughput: 0: 374287.2. Samples: 46399488. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
132
+ [2023-01-11 19:30:03,424][2153185] Avg episode reward: [(0, '5716.311')]
133
+ [2023-01-11 19:30:08,481][2153185] Fps is (10 sec: 377936.6, 60 sec: 376474.3, 300 sec: 349079.7). Total num frames: 49152000. Throughput: 0: 374544.6. Samples: 48658432. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
134
+ [2023-01-11 19:30:08,482][2153185] Avg episode reward: [(0, '5753.585')]
135
+ [2023-01-11 19:30:13,423][2153185] Fps is (10 sec: 380151.6, 60 sec: 374933.9, 300 sec: 349834.5). Total num frames: 50987008. Throughput: 0: 375843.1. Samples: 50925568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
136
+ [2023-01-11 19:30:13,423][2153185] Avg episode reward: [(0, '5924.315')]
137
+ [2023-01-11 19:30:13,427][2153185] Saving new best policy, reward=5924.315!
138
+ [2023-01-11 19:30:18,422][2153185] Fps is (10 sec: 375757.5, 60 sec: 375750.7, 300 sec: 350839.0). Total num frames: 52887552. Throughput: 0: 375698.9. Samples: 52045824. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
139
+ [2023-01-11 19:30:18,423][2153185] Avg episode reward: [(0, '6123.117')]
140
+ [2023-01-11 19:30:18,430][2153185] Saving new best policy, reward=6123.117!
141
+ [2023-01-11 19:30:23,424][2153185] Fps is (10 sec: 373514.6, 60 sec: 374689.5, 300 sec: 351355.1). Total num frames: 54722560. Throughput: 0: 375341.2. Samples: 54263808. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
142
+ [2023-01-11 19:30:23,424][2153185] Avg episode reward: [(0, '5322.819')]
143
+ [2023-01-11 19:30:28,423][2153185] Fps is (10 sec: 373533.7, 60 sec: 375746.5, 300 sec: 352250.9). Total num frames: 56623104. Throughput: 0: 375732.2. Samples: 56557568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
144
+ [2023-01-11 19:30:28,423][2153185] Avg episode reward: [(0, '5822.090')]
145
+ [2023-01-11 19:30:33,424][2153185] Fps is (10 sec: 380091.8, 60 sec: 375732.6, 300 sec: 353088.9). Total num frames: 58523648. Throughput: 0: 375903.8. Samples: 57671680. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
146
+ [2023-01-11 19:30:33,425][2153185] Avg episode reward: [(0, '5254.855')]
147
+ [2023-01-11 19:30:38,462][2153185] Fps is (10 sec: 378651.3, 60 sec: 375853.0, 300 sec: 353802.7). Total num frames: 60424192. Throughput: 0: 376290.2. Samples: 59963392. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
148
+ [2023-01-11 19:30:38,462][2153185] Avg episode reward: [(0, '5823.812')]
149
+ [2023-01-11 19:30:43,424][2153185] Fps is (10 sec: 373560.6, 60 sec: 375728.0, 300 sec: 354253.7). Total num frames: 62259200. Throughput: 0: 375736.2. Samples: 62193664. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
150
+ [2023-01-11 19:30:43,425][2153185] Avg episode reward: [(0, '5819.084')]
151
+ [2023-01-11 19:30:48,476][2153185] Fps is (10 sec: 373017.6, 60 sec: 375538.5, 300 sec: 354867.0). Total num frames: 64159744. Throughput: 0: 375304.5. Samples: 63307776. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
152
+ [2023-01-11 19:30:48,477][2153185] Avg episode reward: [(0, '4931.663')]
153
+ [2023-01-11 19:30:53,422][2153185] Fps is (10 sec: 380175.9, 60 sec: 376842.7, 300 sec: 355649.0). Total num frames: 66060288. Throughput: 0: 376687.2. Samples: 65587200. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
154
+ [2023-01-11 19:30:53,423][2153185] Avg episode reward: [(0, '5748.724')]
155
+ [2023-01-11 19:30:58,423][2153185] Fps is (10 sec: 395291.0, 60 sec: 379017.5, 300 sec: 356975.1). Total num frames: 68091904. Throughput: 0: 379737.8. Samples: 68014080. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
156
+ [2023-01-11 19:30:58,424][2153185] Avg episode reward: [(0, '5415.865')]
157
+ [2023-01-11 19:31:03,441][2153185] Fps is (10 sec: 392479.6, 60 sec: 379999.5, 300 sec: 357533.9). Total num frames: 69992448. Throughput: 0: 379724.7. Samples: 69140480. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
158
+ [2023-01-11 19:31:03,442][2153185] Avg episode reward: [(0, '5741.709')]
159
+ [2023-01-11 19:31:08,422][2153185] Fps is (10 sec: 373597.7, 60 sec: 378294.7, 300 sec: 357803.1). Total num frames: 71827456. Throughput: 0: 380484.8. Samples: 71385088. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
160
+ [2023-01-11 19:31:08,423][2153185] Avg episode reward: [(0, '5806.858')]
161
+ [2023-01-11 19:31:13,425][2153185] Fps is (10 sec: 374146.0, 60 sec: 379000.1, 300 sec: 358340.1). Total num frames: 73728000. Throughput: 0: 379498.7. Samples: 73635840. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
162
+ [2023-01-11 19:31:13,426][2153185] Avg episode reward: [(0, '5602.576')]
163
+ [2023-01-11 19:31:18,435][2153185] Fps is (10 sec: 379630.6, 60 sec: 378937.9, 300 sec: 358840.0). Total num frames: 75628544. Throughput: 0: 380018.1. Samples: 74776576. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
164
+ [2023-01-11 19:31:18,436][2153185] Avg episode reward: [(0, '5567.227')]
165
+ [2023-01-11 19:31:23,423][2153185] Fps is (10 sec: 373655.4, 60 sec: 379023.9, 300 sec: 359049.8). Total num frames: 77463552. Throughput: 0: 379163.0. Samples: 77010944. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
166
+ [2023-01-11 19:31:23,423][2153185] Avg episode reward: [(0, '6320.190')]
167
+ [2023-01-11 19:31:23,427][2153185] Saving new best policy, reward=6320.190!
168
+ [2023-01-11 19:31:28,423][2153185] Fps is (10 sec: 367428.0, 60 sec: 377922.6, 300 sec: 359228.6). Total num frames: 79298560. Throughput: 0: 378658.5. Samples: 79233024. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
169
+ [2023-01-11 19:31:28,424][2153185] Avg episode reward: [(0, '6510.601')]
170
+ [2023-01-11 19:31:28,431][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000012096_79298560.pth...
171
+ [2023-01-11 19:31:28,499][2153185] Saving new best policy, reward=6510.601!
172
+ [2023-01-11 19:31:33,423][2153185] Fps is (10 sec: 366976.3, 60 sec: 376837.8, 300 sec: 359400.9). Total num frames: 81133568. Throughput: 0: 378048.5. Samples: 80300032. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
173
+ [2023-01-11 19:31:33,424][2153185] Avg episode reward: [(0, '6344.935')]
174
+ [2023-01-11 19:31:38,466][2153185] Fps is (10 sec: 378491.2, 60 sec: 377895.9, 300 sec: 360066.8). Total num frames: 83099648. Throughput: 0: 377647.8. Samples: 82597888. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
175
+ [2023-01-11 19:31:38,467][2153185] Avg episode reward: [(0, '6454.606')]
176
+ [2023-01-11 19:31:43,421][2153185] Fps is (10 sec: 380194.7, 60 sec: 377943.4, 300 sec: 360282.8). Total num frames: 84934656. Throughput: 0: 374349.5. Samples: 84858880. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
177
+ [2023-01-11 19:31:43,421][2153185] Avg episode reward: [(0, '6075.015')]
178
+ [2023-01-11 19:31:48,424][2153185] Fps is (10 sec: 375147.6, 60 sec: 378254.3, 300 sec: 360690.6). Total num frames: 86835200. Throughput: 0: 374792.6. Samples: 85999616. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
179
+ [2023-01-11 19:31:48,424][2153185] Avg episode reward: [(0, '6092.570')]
180
+ [2023-01-11 19:31:53,423][2153185] Fps is (10 sec: 380028.3, 60 sec: 377919.0, 300 sec: 361086.4). Total num frames: 88735744. Throughput: 0: 375369.1. Samples: 88276992. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
181
+ [2023-01-11 19:31:53,424][2153185] Avg episode reward: [(0, '5996.674')]
182
+ [2023-01-11 19:31:58,423][2153185] Fps is (10 sec: 373559.8, 60 sec: 374647.3, 300 sec: 361203.8). Total num frames: 90570752. Throughput: 0: 375071.7. Samples: 90513408. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
183
+ [2023-01-11 19:31:58,424][2153185] Avg episode reward: [(0, '6051.410')]
184
+ [2023-01-11 19:32:03,422][2153185] Fps is (10 sec: 373595.6, 60 sec: 374766.2, 300 sec: 361575.5). Total num frames: 92471296. Throughput: 0: 375119.1. Samples: 91652096. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
185
+ [2023-01-11 19:32:03,423][2153185] Avg episode reward: [(0, '6075.545')]
186
+ [2023-01-11 19:32:08,424][2153185] Fps is (10 sec: 380091.6, 60 sec: 375729.7, 300 sec: 361928.2). Total num frames: 94371840. Throughput: 0: 375819.3. Samples: 93923328. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
187
+ [2023-01-11 19:32:08,425][2153185] Avg episode reward: [(0, '5770.103')]
188
+ [2023-01-11 19:32:13,424][2153185] Fps is (10 sec: 373479.6, 60 sec: 374654.9, 300 sec: 362023.5). Total num frames: 96206848. Throughput: 0: 376097.7. Samples: 96157696. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
189
+ [2023-01-11 19:32:13,425][2153185] Avg episode reward: [(0, '6145.203')]
190
+ [2023-01-11 19:32:18,423][2153185] Fps is (10 sec: 386687.5, 60 sec: 376905.1, 300 sec: 362842.7). Total num frames: 98238464. Throughput: 0: 379653.4. Samples: 97384448. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
191
+ [2023-01-11 19:32:18,424][2153185] Avg episode reward: [(0, '6026.312')]
192
+ [2023-01-11 19:32:23,203][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth...
193
+ [2023-01-11 19:32:23,219][2153185] Removing ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth
194
+ [2023-01-11 19:32:23,220][2153185] Stopping Batcher_0...
195
+ [2023-01-11 19:32:23,221][2153185] Stopping InferenceWorker_p0-w0...
196
+ [2023-01-11 19:32:23,221][2153185] Stopping RolloutWorker_w0...
197
+ [2023-01-11 19:32:23,221][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth...
198
+ [2023-01-11 19:32:23,235][2153185] Stopping LearnerWorker_p0...
199
+ [2023-01-11 19:32:23,235][2153185] Component Batcher_0 stopped!
200
+ [2023-01-11 19:32:23,236][2153185] Component InferenceWorker_p0-w0 stopped!
201
+ [2023-01-11 19:32:23,236][2153185] Component RolloutWorker_w0 stopped!
202
+ [2023-01-11 19:32:23,236][2153185] Component LearnerWorker_p0 stopped!
203
+ [2023-01-11 19:32:23,236][2153185] Batcher 0 profile tree view:
204
+ batching: 0.3521, releasing_batches: 0.0642
205
+ [2023-01-11 19:32:23,236][2153185] InferenceWorker_p0-w0 profile tree view:
206
+ update_model: 0.4320
207
+ one_step: 0.0012
208
+ handle_policy_step: 57.3554
209
+ deserialize: 0.4865, stack: 0.0681, obs_to_device_normalize: 10.3711, forward: 35.6708, prepare_outputs: 6.7457, send_messages: 0.8052
210
+ [2023-01-11 19:32:23,237][2153185] Learner 0 profile tree view:
211
+ misc: 0.0050, prepare_batch: 5.5690
212
+ train: 87.4892
213
+ epoch_init: 0.0595, minibatch_init: 0.9957, losses_postprocess: 3.1702, kl_divergence: 5.7630, after_optimizer: 0.3136
214
+ calculate_losses: 17.7913
215
+ losses_init: 0.0331, forward_head: 2.8800, bptt_initial: 0.1263, bptt: 0.1281, tail: 8.7123, advantages_returns: 1.1141, losses: 3.4779
216
+ update: 57.5417
217
+ clip: 8.7673
218
+ [2023-01-11 19:32:23,237][2153185] RolloutWorker_w0 profile tree view:
219
+ wait_for_trajectories: 0.0819, enqueue_policy_requests: 5.6467, process_policy_outputs: 3.6701, env_step: 90.1515, finalize_trajectories: 0.1553, complete_rollouts: 0.0656
220
+ post_env_step: 19.1398
221
+ process_env_step: 7.7900
222
+ [2023-01-11 19:32:23,237][2153185] Loop Runner_EvtLoop terminating...
223
+ [2023-01-11 19:32:23,237][2153185] Runner profile tree view:
224
+ main_loop: 289.1680
225
+ [2023-01-11 19:32:23,238][2153185] Collected {0: 100073472}, FPS: 346073.8