Upload trainer.py with huggingface_hub
Browse files- trainer.py +289 -0
trainer.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from datasets import ClassLabel, Dataset, DatasetDict, load_dataset
|
4 |
+
from datasets.features import Audio
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
from IPython.display import display, HTML
|
9 |
+
|
10 |
+
# Function to load your custom dataset
|
11 |
+
def load_custom_dataset(data_dir):
|
12 |
+
data = {
|
13 |
+
"audio": [],
|
14 |
+
"text": []
|
15 |
+
}
|
16 |
+
|
17 |
+
wav_dir = os.path.join(data_dir, 'wav')
|
18 |
+
txt_dir = os.path.join(data_dir, 'transcription')
|
19 |
+
|
20 |
+
# Assuming filenames in 'wav' and 'txt' match
|
21 |
+
for wav_file in os.listdir(wav_dir):
|
22 |
+
if wav_file.endswith('.wav'):
|
23 |
+
txt_file = wav_file.replace('.wav', '.txt')
|
24 |
+
wav_path = os.path.join(wav_dir, wav_file)
|
25 |
+
txt_path = os.path.join(txt_dir, txt_file)
|
26 |
+
|
27 |
+
# Read the transcription text
|
28 |
+
with open(txt_path, 'r', encoding='utf-8') as f:
|
29 |
+
transcription = f.read().strip()
|
30 |
+
|
31 |
+
# Append to the dataset
|
32 |
+
data["audio"].append(wav_path)
|
33 |
+
data["text"].append(transcription)
|
34 |
+
|
35 |
+
# Create a pandas dataframe
|
36 |
+
df = pd.DataFrame(data)
|
37 |
+
|
38 |
+
# Convert to a Hugging Face dataset
|
39 |
+
dataset = Dataset.from_pandas(df)
|
40 |
+
|
41 |
+
# Define the audio feature (for .wav files)
|
42 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) # Adjust the sampling rate if needed
|
43 |
+
|
44 |
+
return dataset
|
45 |
+
|
46 |
+
custom_train_dataset = load_custom_dataset("./")
|
47 |
+
|
48 |
+
# Combine them into a DatasetDict
|
49 |
+
dataset_dict = DatasetDict({
|
50 |
+
"train": custom_train_dataset,
|
51 |
+
})
|
52 |
+
|
53 |
+
# Select 975 random samples from train and add them to test
|
54 |
+
train_size = len(dataset_dict["train"])
|
55 |
+
sample_indices = random.sample(range(train_size), 975)
|
56 |
+
|
57 |
+
# Select the samples
|
58 |
+
test_samples = dataset_dict["train"].select(sample_indices)
|
59 |
+
|
60 |
+
# Filter out the selected samples from the train dataset
|
61 |
+
remaining_train_samples = dataset_dict["train"].filter(lambda example, idx: idx not in sample_indices, with_indices=True)
|
62 |
+
|
63 |
+
# Add the selected samples to the test dataset
|
64 |
+
dataset_dict["test"] = test_samples
|
65 |
+
dataset_dict["train"] = remaining_train_samples
|
66 |
+
|
67 |
+
print(dataset_dict)
|
68 |
+
|
69 |
+
def show_random_elements(dataset, num_examples=10):
|
70 |
+
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
|
71 |
+
picks = []
|
72 |
+
for _ in range(num_examples):
|
73 |
+
pick = random.randint(0, len(dataset)-1)
|
74 |
+
while pick in picks:
|
75 |
+
pick = random.randint(0, len(dataset)-1)
|
76 |
+
picks.append(pick)
|
77 |
+
|
78 |
+
df = pd.DataFrame(dataset[picks])
|
79 |
+
|
80 |
+
show_random_elements(dataset_dict["train"])
|
81 |
+
|
82 |
+
import re
|
83 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'
|
84 |
+
|
85 |
+
def remove_special_characters(batch):
|
86 |
+
batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower()
|
87 |
+
return batch
|
88 |
+
|
89 |
+
dataset_dict = dataset_dict.map(remove_special_characters)
|
90 |
+
|
91 |
+
show_random_elements(dataset_dict["train"])
|
92 |
+
|
93 |
+
def extract_all_chars(batch):
|
94 |
+
all_text = " ".join(batch["text"])
|
95 |
+
vocab = list(set(all_text))
|
96 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
97 |
+
|
98 |
+
vocabs = dataset_dict.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=dataset_dict.column_names["train"])
|
99 |
+
|
100 |
+
vocab_list = list(set(vocabs["train"]["vocab"][0]))
|
101 |
+
|
102 |
+
vocab_dict = {v: k for k, v in enumerate(vocab_list)}
|
103 |
+
print(vocab_dict)
|
104 |
+
|
105 |
+
vocab_dict["[UNK]"] = len(vocab_dict)
|
106 |
+
vocab_dict["[PAD]"] = len(vocab_dict)
|
107 |
+
print(len(vocab_dict))
|
108 |
+
|
109 |
+
import json
|
110 |
+
with open('vocab.json', 'w') as vocab_file:
|
111 |
+
json.dump(vocab_dict, vocab_file)
|
112 |
+
|
113 |
+
from transformers import Wav2Vec2CTCTokenizer
|
114 |
+
|
115 |
+
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|", vocab_size=len(vocab_dict))
|
116 |
+
|
117 |
+
from transformers import Wav2Vec2FeatureExtractor
|
118 |
+
|
119 |
+
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)
|
120 |
+
|
121 |
+
from transformers import Wav2Vec2Processor
|
122 |
+
|
123 |
+
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
124 |
+
|
125 |
+
rand_int = random.randint(0, len(dataset_dict["train"]))
|
126 |
+
|
127 |
+
print("Target text:", dataset_dict["train"][rand_int]["text"])
|
128 |
+
print("Input array shape:", np.asarray(dataset_dict["train"][rand_int]["audio"]["array"]).shape)
|
129 |
+
print("Sampling rate:", dataset_dict["train"][rand_int]["audio"]["sampling_rate"])
|
130 |
+
|
131 |
+
def prepare_dataset(batch):
|
132 |
+
audio = batch["audio"]
|
133 |
+
|
134 |
+
# batched output is "un-batched" to ensure mapping is correct
|
135 |
+
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
|
136 |
+
|
137 |
+
with processor.as_target_processor():
|
138 |
+
batch["labels"] = processor(batch["text"]).input_ids
|
139 |
+
return batch
|
140 |
+
|
141 |
+
dataset_dict = dataset_dict.map(prepare_dataset, remove_columns=dataset_dict.column_names["train"], num_proc=None)
|
142 |
+
|
143 |
+
import torch
|
144 |
+
|
145 |
+
from dataclasses import dataclass, field
|
146 |
+
from typing import Any, Dict, List, Optional, Union
|
147 |
+
|
148 |
+
@dataclass
|
149 |
+
class DataCollatorCTCWithPadding:
|
150 |
+
"""
|
151 |
+
Data collator that will dynamically pad the inputs received.
|
152 |
+
Args:
|
153 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
154 |
+
The processor used for proccessing the data.
|
155 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
156 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
157 |
+
among:
|
158 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
159 |
+
sequence if provided).
|
160 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
161 |
+
maximum acceptable input length for the model if that argument is not provided.
|
162 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
163 |
+
different lengths).
|
164 |
+
max_length (:obj:`int`, `optional`):
|
165 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
166 |
+
max_length_labels (:obj:`int`, `optional`):
|
167 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
168 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
169 |
+
If set will pad the sequence to a multiple of the provided value.
|
170 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
171 |
+
7.5 (Volta).
|
172 |
+
"""
|
173 |
+
|
174 |
+
processor: Wav2Vec2Processor
|
175 |
+
padding: Union[bool, str] = True
|
176 |
+
max_length: Optional[int] = None
|
177 |
+
max_length_labels: Optional[int] = None
|
178 |
+
pad_to_multiple_of: Optional[int] = None
|
179 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
180 |
+
|
181 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
182 |
+
# split inputs and labels since they have to be of different lengths and need
|
183 |
+
# different padding methods
|
184 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
185 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
186 |
+
|
187 |
+
batch = self.processor.pad(
|
188 |
+
input_features,
|
189 |
+
padding=self.padding,
|
190 |
+
max_length=self.max_length,
|
191 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
192 |
+
return_tensors="pt",
|
193 |
+
)
|
194 |
+
with self.processor.as_target_processor():
|
195 |
+
labels_batch = self.processor.pad(
|
196 |
+
label_features,
|
197 |
+
padding=self.padding,
|
198 |
+
max_length=self.max_length_labels,
|
199 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
200 |
+
return_tensors="pt",
|
201 |
+
)
|
202 |
+
|
203 |
+
# replace padding with -100 to ignore loss correctly
|
204 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
205 |
+
|
206 |
+
batch["labels"] = labels
|
207 |
+
|
208 |
+
return batch
|
209 |
+
|
210 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
|
211 |
+
|
212 |
+
import evaluate
|
213 |
+
|
214 |
+
wer_metric = evaluate.load("wer")
|
215 |
+
|
216 |
+
def compute_metrics(pred):
|
217 |
+
pred_logits = pred.predictions
|
218 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
219 |
+
|
220 |
+
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
221 |
+
|
222 |
+
pred_str = processor.batch_decode(pred_ids)
|
223 |
+
# we do not want to group tokens when computing the metrics
|
224 |
+
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
225 |
+
|
226 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
227 |
+
|
228 |
+
return {"wer": wer}
|
229 |
+
|
230 |
+
from transformers import Wav2Vec2ForCTC
|
231 |
+
|
232 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
233 |
+
"facebook/wav2vec2-large",
|
234 |
+
ctc_loss_reduction="mean",
|
235 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
236 |
+
vocab_size=len(vocab_dict),
|
237 |
+
)
|
238 |
+
|
239 |
+
model.freeze_feature_encoder()
|
240 |
+
|
241 |
+
model.gradient_checkpointing_enable()
|
242 |
+
|
243 |
+
from transformers import TrainingArguments
|
244 |
+
|
245 |
+
training_args = TrainingArguments(
|
246 |
+
output_dir='wav2vec2-large-mal',
|
247 |
+
group_by_length=True,
|
248 |
+
per_device_train_batch_size=36,
|
249 |
+
eval_strategy="steps",
|
250 |
+
num_train_epochs=30,
|
251 |
+
fp16=True,
|
252 |
+
gradient_checkpointing=True,
|
253 |
+
save_steps=500,
|
254 |
+
eval_steps=500,
|
255 |
+
logging_steps=500,
|
256 |
+
learning_rate=1e-4,
|
257 |
+
weight_decay=0.005,
|
258 |
+
warmup_steps=1000,
|
259 |
+
save_total_limit=2,
|
260 |
+
)
|
261 |
+
|
262 |
+
from transformers import Trainer
|
263 |
+
|
264 |
+
trainer = Trainer(
|
265 |
+
model=model,
|
266 |
+
data_collator=data_collator,
|
267 |
+
args=training_args,
|
268 |
+
compute_metrics=compute_metrics,
|
269 |
+
train_dataset=dataset_dict["train"],
|
270 |
+
eval_dataset=dataset_dict["test"],
|
271 |
+
processing_class=processor.feature_extractor,
|
272 |
+
)
|
273 |
+
|
274 |
+
trainer.train()
|
275 |
+
|
276 |
+
def map_to_result(batch):
|
277 |
+
with torch.no_grad():
|
278 |
+
input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0)
|
279 |
+
logits = model(input_values).logits
|
280 |
+
|
281 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
282 |
+
batch["pred_str"] = processor.batch_decode(pred_ids)[0]
|
283 |
+
batch["text"] = processor.decode(batch["labels"], group_tokens=False)
|
284 |
+
|
285 |
+
return batch
|
286 |
+
|
287 |
+
results = dataset_dict["test"].map(map_to_result, remove_columns=dataset_dict["test"].column_names)
|
288 |
+
|
289 |
+
print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"])))
|