Create push_to_hub.py
Browse files- push_to_hub.py +46 -0
push_to_hub.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor
|
2 |
+
import json
|
3 |
+
|
4 |
+
# Path to your local model directory and vocab file
|
5 |
+
local_model_path = './wav2vec2-base-mal' # Directory with model checkpoints
|
6 |
+
vocab_path = './vocab.json' # Path to your vocab.json file
|
7 |
+
|
8 |
+
# Hugging Face model ID (replace with your username)
|
9 |
+
model_id = "aoxo/wav2vec2-base-mal"
|
10 |
+
|
11 |
+
# Load vocab
|
12 |
+
with open(vocab_path, 'r') as f:
|
13 |
+
vocab_dict = json.load(f)
|
14 |
+
|
15 |
+
# Create custom tokenizer
|
16 |
+
tokenizer = Wav2Vec2CTCTokenizer(
|
17 |
+
vocab_path,
|
18 |
+
unk_token="[UNK]",
|
19 |
+
pad_token="[PAD]",
|
20 |
+
word_delimiter_token="|"
|
21 |
+
)
|
22 |
+
|
23 |
+
# Create feature extractor
|
24 |
+
feature_extractor = Wav2Vec2FeatureExtractor(
|
25 |
+
feature_size=1,
|
26 |
+
sampling_rate=16000,
|
27 |
+
padding_value=0.0,
|
28 |
+
do_normalize=True,
|
29 |
+
return_attention_mask=False
|
30 |
+
)
|
31 |
+
|
32 |
+
# Create processor
|
33 |
+
processor = Wav2Vec2Processor(
|
34 |
+
feature_extractor=feature_extractor,
|
35 |
+
tokenizer=tokenizer
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load the model from the checkpoint directory
|
39 |
+
model = Wav2Vec2ForCTC.from_pretrained(local_model_path)
|
40 |
+
|
41 |
+
# Push to Hugging Face Hub
|
42 |
+
model.push_to_hub(model_id)
|
43 |
+
processor.push_to_hub(model_id)
|
44 |
+
tokenizer.push_to_hub(model_id)
|
45 |
+
|
46 |
+
print(f"Model, processor, and tokenizer successfully pushed to {model_id}")
|