patrickvonplaten commited on
Commit
46687c6
β€’
1 Parent(s): 62a0cff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 0.78
27
  ---
28
  # Wav2Vec2-Large-XLSR-53-Odia
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
@@ -42,13 +42,13 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
42
  # Preprocessing the datasets.
43
  # We need to read the aduio files as arrays
44
  def speech_file_to_array_fn(batch):
45
- speech_array, sampling_rate = torchaudio.load(batch["path"])
46
- batch["speech"] = resampler(speech_array).squeeze().numpy()
47
- return batch
48
  test_dataset = test_dataset.map(speech_file_to_array_fn)
49
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
  with torch.no_grad():
51
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
  predicted_ids = torch.argmax(logits, dim=-1)
53
  print("Prediction:", processor.batch_decode(predicted_ids))
54
  print("Reference:", test_dataset["sentence"][:2])
@@ -66,25 +66,25 @@ wer = load_metric("wer")
66
  processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
67
  model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
68
  model.to("cuda")
69
- chars_to_ignore_regex = '[\!\"\'\,\-\:\;\?\|\ΰ₯€\–\’\β€œ\”]'
70
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
  # Preprocessing the datasets.
72
  # We need to read the aduio files as arrays
73
  def speech_file_to_array_fn(batch):
74
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
75
- speech_array, sampling_rate = torchaudio.load(batch["path"])
76
- batch["speech"] = resampler(speech_array).squeeze().numpy()
77
- return batch
78
  test_dataset = test_dataset.map(speech_file_to_array_fn)
79
  # Preprocessing the datasets.
80
  # We need to read the aduio files as arrays
81
  def evaluate(batch):
82
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
83
- with torch.no_grad():
84
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
85
- pred_ids = torch.argmax(logits, dim=-1)
86
- batch["pred_strings"] = processor.batch_decode(pred_ids)
87
- return batch
88
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
  ```
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 78.08
27
  ---
28
  # Wav2Vec2-Large-XLSR-53-Odia
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
 
42
  # Preprocessing the datasets.
43
  # We need to read the aduio files as arrays
44
  def speech_file_to_array_fn(batch):
45
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
46
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
47
+ \treturn batch
48
  test_dataset = test_dataset.map(speech_file_to_array_fn)
49
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
  with torch.no_grad():
51
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
  predicted_ids = torch.argmax(logits, dim=-1)
53
  print("Prediction:", processor.batch_decode(predicted_ids))
54
  print("Reference:", test_dataset["sentence"][:2])
 
66
  processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
67
  model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
68
  model.to("cuda")
69
+ chars_to_ignore_regex = '[\\!\\"\\'\\,\\-\\:\\;\\?\\|\\ΰ₯€\\–\\’\\β€œ\\”]'
70
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
  # Preprocessing the datasets.
72
  # We need to read the aduio files as arrays
73
  def speech_file_to_array_fn(batch):
74
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
75
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
76
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
77
+ \treturn batch
78
  test_dataset = test_dataset.map(speech_file_to_array_fn)
79
  # Preprocessing the datasets.
80
  # We need to read the aduio files as arrays
81
  def evaluate(batch):
82
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
83
+ \twith torch.no_grad():
84
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
85
+ \tpred_ids = torch.argmax(logits, dim=-1)
86
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
87
+ \treturn batch
88
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
  ```