antonionieto commited on
Commit
8216143
1 Parent(s): 30de9a2

Upload first version of Lunar lander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 161.46 +/- 79.55
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f747164db90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747164dc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747164dcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747164dd40>", "_build": "<function ActorCriticPolicy._build at 0x7f747164ddd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f747164de60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747164def0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f747164df80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7471655050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74716550e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7471655170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f747169a990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652277546.210248, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC0a6T5Mr8W9GM+KOpyjxDkPT/s+nuHwuQAAgD8AAIA/oEA4vmzfizwdxno8RTfeutJcFb7e6987AACAPwAAgD8zLYE9W7dpP0MWoD0s3Zi+HhIEvOZfhjwAAAAAAAAAABpiGj4CvqM/aFsAP7Vjmb5Gifs94SIsPQAAAAAAAAAAs8PRvSkMXLpiVhM8sFTUvK76IDtHKrq9AAAAAAAAgD+AA789SMWFuoHlOboASMG1SbkfO6BzUjkAAIA/AACAP2bO4j59Ux088k+SvMGXEDoGNti96cOxOwAAgD8AAIA/JuGLvRmEWD5kpru9HfBGvhT/Sj1DyPs9AAAAAAAAAABAh7o9Hz2cuV34DrbrQE4xZScOPJa5OjUAAIA/AACAPxbSo74PQlk9hdkdPALpL7pp5oK+802BuwAAgD8AAIA/Zg9KPrjz0LsPoq67V0g+OY50Rb0PcBs6AACAPwAAgD8zk5w+dEXLvFeWjDrsZ/y4s6UjvvHao7kAAIA/AACAP00Mr71IT6S6UIN6O9oaMbZ/Gtu6v96OugAAgD8AAIA/gG0TvSnoOrof46u7uvYLNTz87jnK53m0AACAPwAAgD/mtgI9FOSkusPqiLvOTB60rYHKuljOXDMAAIA/AACAP02DMz7sX8E8grKFvMFwJ7txpFE+tmw0vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7wcdt+7UkCUhpRSlIwBbJRN6AOMAXSUR0B9I964UeuFdX2UKGgGaAloD0MISra6nBLfVkCUhpRSlGgVTegDaBZHQH0oSkO7QLN1fZQoaAZoCWgPQwi+amXCL6lQQJSGlFKUaBVN6ANoFkdAfTjSQYDT0HV9lChoBmgJaA9DCFKZYg6C9ldAlIaUUpRoFU3oA2gWR0B9QFb9qDbrdX2UKGgGaAloD0MImQ0yycgUZUCUhpRSlGgVTegDaBZHQH1DOpfhMrV1fZQoaAZoCWgPQwgVAU7v4n9QQJSGlFKUaBVN6ANoFkdAfVgws5GSZHV9lChoBmgJaA9DCAd6qG3DQlpAlIaUUpRoFU3oA2gWR0B9bsLgGbCrdX2UKGgGaAloD0MIhSaJJeWkWsCUhpRSlGgVTZgBaBZHQH2xIoVmBe51fZQoaAZoCWgPQwhvnuqQm2VdQJSGlFKUaBVN6ANoFkdAfb7LuQZGa3V9lChoBmgJaA9DCLM/UG7bn2BAlIaUUpRoFU3oA2gWR0B+TQdU83dcdX2UKGgGaAloD0MIOLwgIjWFYkCUhpRSlGgVTegDaBZHQH5jNuk1uR91fZQoaAZoCWgPQwhDHVa45bpYQJSGlFKUaBVN6ANoFkdAfnBuieumrXV9lChoBmgJaA9DCI7pCUs8JDNAlIaUUpRoFUvqaBZHQH56GrsByS51fZQoaAZoCWgPQwhYc4BgjmJUQJSGlFKUaBVN6ANoFkdAfpEVXmvGInV9lChoBmgJaA9DCNeGinH+kVZAlIaUUpRoFU3oA2gWR0B+k2nTAnD0dX2UKGgGaAloD0MIZmfROxXnXUCUhpRSlGgVTegDaBZHQH6g7XL/0d11fZQoaAZoCWgPQwhdbjDUYclNQJSGlFKUaBVN6ANoFkdAfqLMrVe8f3V9lChoBmgJaA9DCJsb0xOW/1VAlIaUUpRoFU3oA2gWR0B+paGvfTCtdX2UKGgGaAloD0MI08H6P4d5LECUhpRSlGgVTQwBaBZHQH62rR0EHMV1fZQoaAZoCWgPQwhnuAGfH5RcQJSGlFKUaBVN6ANoFkdAfsN4oJAt4HV9lChoBmgJaA9DCCOhLedS/1RAlIaUUpRoFU3oA2gWR0B+x4tpVS4wdX2UKGgGaAloD0MIKdAn8iQtRUCUhpRSlGgVS9ZoFkdAftrXQtz0YnV9lChoBmgJaA9DCGABTBk4qGFAlIaUUpRoFU3oA2gWR0B+3HGipNsWdX2UKGgGaAloD0MI4Ln3cElRYUCUhpRSlGgVTegDaBZHQH7fLyH2ys11fZQoaAZoCWgPQwjysiYWeLdgQJSGlFKUaBVN6ANoFkdAfvNYiPhhpnV9lChoBmgJaA9DCJcd4h+22D7AlIaUUpRoFUvQaBZHQH76jXrdFfB1fZQoaAZoCWgPQwjIYTB/hZBYQJSGlFKUaBVN6ANoFkdAfwethuwX7HV9lChoBmgJaA9DCH45s12hkFlAlIaUUpRoFU3oA2gWR0B/RKB9Tgl4dX2UKGgGaAloD0MIC7YRT3bVXECUhpRSlGgVTegDaBZHQH/iTgEU0vZ1fZQoaAZoCWgPQwgOMV7zqtRjQJSGlFKUaBVN6ANoFkdAgAOjL0SRKnV9lChoBmgJaA9DCAYOaOkK4jtAlIaUUpRoFU3oA2gWR0CACOjdpItldX2UKGgGaAloD0MIAdvBiH2QV0CUhpRSlGgVTegDaBZHQIAUhIxxkup1fZQoaAZoCWgPQwiM2v0qwNVgQJSGlFKUaBVN6ANoFkdAgBWsqBmPHXV9lChoBmgJaA9DCPF+3H75S19AlIaUUpRoFU3oA2gWR0CAHJ3IMjNZdX2UKGgGaAloD0MIcCTQYFMDW0CUhpRSlGgVTegDaBZHQIAfRxm03Ox1fZQoaAZoCWgPQwjULNDukHpBQJSGlFKUaBVN6ANoFkdAgCgbc45tFnV9lChoBmgJaA9DCG743XTL2FZAlIaUUpRoFU3oA2gWR0CALpMWXTmXdX2UKGgGaAloD0MIgIKLFTXIFcCUhpRSlGgVS+FoFkdAgDXCCSRr8HV9lChoBmgJaA9DCGQgzy7fqifAlIaUUpRoFUvOaBZHQIA6YtUXHip1fZQoaAZoCWgPQwgdHVcju5BiQJSGlFKUaBVN6ANoFkdAgDx4wyqMnHV9lChoBmgJaA9DCJfGL7ySqllAlIaUUpRoFU3oA2gWR0CAPVj2i+L4dX2UKGgGaAloD0MIr7FLVG9NZECUhpRSlGgVTegDaBZHQIA+7yYoiLV1fZQoaAZoCWgPQwg9LNSa5gZYQJSGlFKUaBVN6ANoFkdAgEmFRP420nV9lChoBmgJaA9DCHDpmPMMc2FAlIaUUpRoFU3oA2gWR0CATSG/vfCRdX2UKGgGaAloD0MI9Wc/UkQXYECUhpRSlGgVTegDaBZHQIBToK0D2al1fZQoaAZoCWgPQwj6CPzh58lXQJSGlFKUaBVN6ANoFkdAgHK+/pMYdnV9lChoBmgJaA9DCLaeIRyza2xAlIaUUpRoFU3kAWgWR0CAewy31BdEdX2UKGgGaAloD0MIg9pv7UTHVkCUhpRSlGgVTegDaBZHQIC/G6qbSZ11fZQoaAZoCWgPQwhQOpFgqvFdQJSGlFKUaBVN6ANoFkdAgNDO0LMLW3V9lChoBmgJaA9DCGIuqdpuQVxAlIaUUpRoFU3oA2gWR0CA1af/WDpUdX2UKGgGaAloD0MIJt9sc2PaCkCUhpRSlGgVTQ8BaBZHQIDdyrR0EHN1fZQoaAZoCWgPQwgIy9jQzfVaQJSGlFKUaBVN6ANoFkdAgOJUyYXwb3V9lChoBmgJaA9DCFpo5zQLoVhAlIaUUpRoFU3oA2gWR0CA7LWilBQfdX2UKGgGaAloD0MI+MYQABwjIkCUhpRSlGgVS9VoFkdAgPRXyy2QXHV9lChoBmgJaA9DCHCWkuUkQF1AlIaUUpRoFU3oA2gWR0CA9shysCDFdX2UKGgGaAloD0MI3q0s0dm7YECUhpRSlGgVTegDaBZHQID9mivgWJt1fZQoaAZoCWgPQwiZ2HxcG/ddQJSGlFKUaBVN6ANoFkdAgQnG8dxQznV9lChoBmgJaA9DCMf0hCUehWRAlIaUUpRoFU3oA2gWR0CBC+IznA6/dX2UKGgGaAloD0MIoUrNHuhJZECUhpRSlGgVTegDaBZHQIEMyl+EytV1fZQoaAZoCWgPQwha2NMOf1xgQJSGlFKUaBVN6ANoFkdAgQ5re67NCHV9lChoBmgJaA9DCCJVFK+y5l5AlIaUUpRoFU3oA2gWR0CBGWkt29tedX2UKGgGaAloD0MIHF4QkZo8X0CUhpRSlGgVTegDaBZHQIEdTc2zfJp1fZQoaAZoCWgPQwjwNJnxthdcQJSGlFKUaBVN6ANoFkdAgSOubRWtEHV9lChoBmgJaA9DCCnni70X3xjAlIaUUpRoFUvPaBZHQIE6LmW+oLp1fZQoaAZoCWgPQwhNui2RC4xeQJSGlFKUaBVN6ANoFkdAgUL+hPCVKXV9lChoBmgJaA9DCIDSUKOQalpAlIaUUpRoFU3oA2gWR0CBWoAsCkoGdX2UKGgGaAloD0MIRwINNvUZYECUhpRSlGgVTegDaBZHQIGnzNB4Uvh1fZQoaAZoCWgPQwjJVpdTAoheQJSGlFKUaBVN6ANoFkdAgbCI2GZeA3V9lChoBmgJaA9DCMhD391KTGRAlIaUUpRoFU3oA2gWR0CBtSk30f5ldX2UKGgGaAloD0MIWi+GcqJHZECUhpRSlGgVTegDaBZHQIG/H6Eal1t1fZQoaAZoCWgPQwgIAI49e/9dQJSGlFKUaBVN6ANoFkdAgcbB2OhkAnV9lChoBmgJaA9DCHx/g/bq0lhAlIaUUpRoFU3oA2gWR0CByTuRcNYsdX2UKGgGaAloD0MIymyQScZbYECUhpRSlGgVTegDaBZHQIHP7IxQBPt1fZQoaAZoCWgPQwgdWfllMGtiQJSGlFKUaBVN6ANoFkdAgdvjebd8A3V9lChoBmgJaA9DCKdaC7PQGlJAlIaUUpRoFU3oA2gWR0CB3gPQv6CUdX2UKGgGaAloD0MIB14td2YpVkCUhpRSlGgVTegDaBZHQIHfAztTkyV1fZQoaAZoCWgPQwiRm+EGfF1YQJSGlFKUaBVN6ANoFkdAgeBsRYigTXV9lChoBmgJaA9DCMefqGxYQFZAlIaUUpRoFU3oA2gWR0CB6eavzOHGdX2UKGgGaAloD0MICW6kbJEFY0CUhpRSlGgVTegDaBZHQIHzUhzNliB1fZQoaAZoCWgPQwhxjjo6rtZdQJSGlFKUaBVN6ANoFkdAgghr61stTXV9lChoBmgJaA9DCJz6QPLOZ1lAlIaUUpRoFU3oA2gWR0CCEDZtelbedX2UKGgGaAloD0MIJXSXxFmXYECUhpRSlGgVTegDaBZHQIInqQRwqAl1fZQoaAZoCWgPQwiMD7OXbTFgQJSGlFKUaBVN6ANoFkdAgnVW5xzaK3V9lChoBmgJaA9DCG+bqRCPwE9AlIaUUpRoFU3oA2gWR0CCfpUPQOWjdX2UKGgGaAloD0MIP+WYLO7oXECUhpRSlGgVTegDaBZHQIKDhDohY/51fZQoaAZoCWgPQwitiQW+olFdQJSGlFKUaBVN6ANoFkdAgo3hZIQOF3V9lChoBmgJaA9DCEwW9x+ZelRAlIaUUpRoFU3oA2gWR0CClazFdcB2dX2UKGgGaAloD0MIF6BtNWs9YECUhpRSlGgVTegDaBZHQIKYPYjB2wF1fZQoaAZoCWgPQwjZX3ZPHrdXQJSGlFKUaBVN6ANoFkdAgp9KJEYwZnV9lChoBmgJaA9DCMtkOJ5P12BAlIaUUpRoFU3oA2gWR0CCrJ9deIEbdX2UKGgGaAloD0MIu3zrw3q7TkCUhpRSlGgVTegDaBZHQIKu6RW912d1fZQoaAZoCWgPQwjhfyvZsXU4QJSGlFKUaBVN6ANoFkdAgq/JJ5E+gXV9lChoBmgJaA9DCK4Mqg1OHCtAlIaUUpRoFUvXaBZHQIKwejwhGH51fZQoaAZoCWgPQwgib7n6MXhhQJSGlFKUaBVN6ANoFkdAgrFKVII4VHV9lChoBmgJaA9DCHNnJhjOUFZAlIaUUpRoFU3oA2gWR0CCu7lUZNwjdX2UKGgGaAloD0MITG4UWWsGWUCUhpRSlGgVTegDaBZHQILGdZcLSeB1fZQoaAZoCWgPQwiwcJLmj3FhQJSGlFKUaBVN6ANoFkdAgt297OVxCXV9lChoBmgJaA9DCEjgDz//6l1AlIaUUpRoFU3oA2gWR0CC5WsFt8/mdX2UKGgGaAloD0MIwAevXdqeYkCUhpRSlGgVTegDaBZHQIL7MrVe8f51fZQoaAZoCWgPQwjni70XX25DQJSGlFKUaBVL5GgWR0CDAMUs4DLbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:810899bfc6edb90029d261b831bb18b12447d7270a0d90702d6d13fe7c039edc
3
+ size 144035
ppo-LunarLander-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f747164db90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747164dc20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747164dcb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747164dd40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f747164ddd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f747164de60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747164def0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f747164df80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7471655050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74716550e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7471655170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f747169a990>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652277546.210248,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC0a6T5Mr8W9GM+KOpyjxDkPT/s+nuHwuQAAgD8AAIA/oEA4vmzfizwdxno8RTfeutJcFb7e6987AACAPwAAgD8zLYE9W7dpP0MWoD0s3Zi+HhIEvOZfhjwAAAAAAAAAABpiGj4CvqM/aFsAP7Vjmb5Gifs94SIsPQAAAAAAAAAAs8PRvSkMXLpiVhM8sFTUvK76IDtHKrq9AAAAAAAAgD+AA789SMWFuoHlOboASMG1SbkfO6BzUjkAAIA/AACAP2bO4j59Ux088k+SvMGXEDoGNti96cOxOwAAgD8AAIA/JuGLvRmEWD5kpru9HfBGvhT/Sj1DyPs9AAAAAAAAAABAh7o9Hz2cuV34DrbrQE4xZScOPJa5OjUAAIA/AACAPxbSo74PQlk9hdkdPALpL7pp5oK+802BuwAAgD8AAIA/Zg9KPrjz0LsPoq67V0g+OY50Rb0PcBs6AACAPwAAgD8zk5w+dEXLvFeWjDrsZ/y4s6UjvvHao7kAAIA/AACAP00Mr71IT6S6UIN6O9oaMbZ/Gtu6v96OugAAgD8AAIA/gG0TvSnoOrof46u7uvYLNTz87jnK53m0AACAPwAAgD/mtgI9FOSkusPqiLvOTB60rYHKuljOXDMAAIA/AACAP02DMz7sX8E8grKFvMFwJ7txpFE+tmw0vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7wcdt+7UkCUhpRSlIwBbJRN6AOMAXSUR0B9I964UeuFdX2UKGgGaAloD0MISra6nBLfVkCUhpRSlGgVTegDaBZHQH0oSkO7QLN1fZQoaAZoCWgPQwi+amXCL6lQQJSGlFKUaBVN6ANoFkdAfTjSQYDT0HV9lChoBmgJaA9DCFKZYg6C9ldAlIaUUpRoFU3oA2gWR0B9QFb9qDbrdX2UKGgGaAloD0MImQ0yycgUZUCUhpRSlGgVTegDaBZHQH1DOpfhMrV1fZQoaAZoCWgPQwgVAU7v4n9QQJSGlFKUaBVN6ANoFkdAfVgws5GSZHV9lChoBmgJaA9DCAd6qG3DQlpAlIaUUpRoFU3oA2gWR0B9bsLgGbCrdX2UKGgGaAloD0MIhSaJJeWkWsCUhpRSlGgVTZgBaBZHQH2xIoVmBe51fZQoaAZoCWgPQwhvnuqQm2VdQJSGlFKUaBVN6ANoFkdAfb7LuQZGa3V9lChoBmgJaA9DCLM/UG7bn2BAlIaUUpRoFU3oA2gWR0B+TQdU83dcdX2UKGgGaAloD0MIOLwgIjWFYkCUhpRSlGgVTegDaBZHQH5jNuk1uR91fZQoaAZoCWgPQwhDHVa45bpYQJSGlFKUaBVN6ANoFkdAfnBuieumrXV9lChoBmgJaA9DCI7pCUs8JDNAlIaUUpRoFUvqaBZHQH56GrsByS51fZQoaAZoCWgPQwhYc4BgjmJUQJSGlFKUaBVN6ANoFkdAfpEVXmvGInV9lChoBmgJaA9DCNeGinH+kVZAlIaUUpRoFU3oA2gWR0B+k2nTAnD0dX2UKGgGaAloD0MIZmfROxXnXUCUhpRSlGgVTegDaBZHQH6g7XL/0d11fZQoaAZoCWgPQwhdbjDUYclNQJSGlFKUaBVN6ANoFkdAfqLMrVe8f3V9lChoBmgJaA9DCJsb0xOW/1VAlIaUUpRoFU3oA2gWR0B+paGvfTCtdX2UKGgGaAloD0MI08H6P4d5LECUhpRSlGgVTQwBaBZHQH62rR0EHMV1fZQoaAZoCWgPQwhnuAGfH5RcQJSGlFKUaBVN6ANoFkdAfsN4oJAt4HV9lChoBmgJaA9DCCOhLedS/1RAlIaUUpRoFU3oA2gWR0B+x4tpVS4wdX2UKGgGaAloD0MIKdAn8iQtRUCUhpRSlGgVS9ZoFkdAftrXQtz0YnV9lChoBmgJaA9DCGABTBk4qGFAlIaUUpRoFU3oA2gWR0B+3HGipNsWdX2UKGgGaAloD0MI4Ln3cElRYUCUhpRSlGgVTegDaBZHQH7fLyH2ys11fZQoaAZoCWgPQwjysiYWeLdgQJSGlFKUaBVN6ANoFkdAfvNYiPhhpnV9lChoBmgJaA9DCJcd4h+22D7AlIaUUpRoFUvQaBZHQH76jXrdFfB1fZQoaAZoCWgPQwjIYTB/hZBYQJSGlFKUaBVN6ANoFkdAfwethuwX7HV9lChoBmgJaA9DCH45s12hkFlAlIaUUpRoFU3oA2gWR0B/RKB9Tgl4dX2UKGgGaAloD0MIC7YRT3bVXECUhpRSlGgVTegDaBZHQH/iTgEU0vZ1fZQoaAZoCWgPQwgOMV7zqtRjQJSGlFKUaBVN6ANoFkdAgAOjL0SRKnV9lChoBmgJaA9DCAYOaOkK4jtAlIaUUpRoFU3oA2gWR0CACOjdpItldX2UKGgGaAloD0MIAdvBiH2QV0CUhpRSlGgVTegDaBZHQIAUhIxxkup1fZQoaAZoCWgPQwiM2v0qwNVgQJSGlFKUaBVN6ANoFkdAgBWsqBmPHXV9lChoBmgJaA9DCPF+3H75S19AlIaUUpRoFU3oA2gWR0CAHJ3IMjNZdX2UKGgGaAloD0MIcCTQYFMDW0CUhpRSlGgVTegDaBZHQIAfRxm03Ox1fZQoaAZoCWgPQwjULNDukHpBQJSGlFKUaBVN6ANoFkdAgCgbc45tFnV9lChoBmgJaA9DCG743XTL2FZAlIaUUpRoFU3oA2gWR0CALpMWXTmXdX2UKGgGaAloD0MIgIKLFTXIFcCUhpRSlGgVS+FoFkdAgDXCCSRr8HV9lChoBmgJaA9DCGQgzy7fqifAlIaUUpRoFUvOaBZHQIA6YtUXHip1fZQoaAZoCWgPQwgdHVcju5BiQJSGlFKUaBVN6ANoFkdAgDx4wyqMnHV9lChoBmgJaA9DCJfGL7ySqllAlIaUUpRoFU3oA2gWR0CAPVj2i+L4dX2UKGgGaAloD0MIr7FLVG9NZECUhpRSlGgVTegDaBZHQIA+7yYoiLV1fZQoaAZoCWgPQwg9LNSa5gZYQJSGlFKUaBVN6ANoFkdAgEmFRP420nV9lChoBmgJaA9DCHDpmPMMc2FAlIaUUpRoFU3oA2gWR0CATSG/vfCRdX2UKGgGaAloD0MI9Wc/UkQXYECUhpRSlGgVTegDaBZHQIBToK0D2al1fZQoaAZoCWgPQwj6CPzh58lXQJSGlFKUaBVN6ANoFkdAgHK+/pMYdnV9lChoBmgJaA9DCLaeIRyza2xAlIaUUpRoFU3kAWgWR0CAewy31BdEdX2UKGgGaAloD0MIg9pv7UTHVkCUhpRSlGgVTegDaBZHQIC/G6qbSZ11fZQoaAZoCWgPQwhQOpFgqvFdQJSGlFKUaBVN6ANoFkdAgNDO0LMLW3V9lChoBmgJaA9DCGIuqdpuQVxAlIaUUpRoFU3oA2gWR0CA1af/WDpUdX2UKGgGaAloD0MIJt9sc2PaCkCUhpRSlGgVTQ8BaBZHQIDdyrR0EHN1fZQoaAZoCWgPQwgIy9jQzfVaQJSGlFKUaBVN6ANoFkdAgOJUyYXwb3V9lChoBmgJaA9DCFpo5zQLoVhAlIaUUpRoFU3oA2gWR0CA7LWilBQfdX2UKGgGaAloD0MI+MYQABwjIkCUhpRSlGgVS9VoFkdAgPRXyy2QXHV9lChoBmgJaA9DCHCWkuUkQF1AlIaUUpRoFU3oA2gWR0CA9shysCDFdX2UKGgGaAloD0MI3q0s0dm7YECUhpRSlGgVTegDaBZHQID9mivgWJt1fZQoaAZoCWgPQwiZ2HxcG/ddQJSGlFKUaBVN6ANoFkdAgQnG8dxQznV9lChoBmgJaA9DCMf0hCUehWRAlIaUUpRoFU3oA2gWR0CBC+IznA6/dX2UKGgGaAloD0MIoUrNHuhJZECUhpRSlGgVTegDaBZHQIEMyl+EytV1fZQoaAZoCWgPQwha2NMOf1xgQJSGlFKUaBVN6ANoFkdAgQ5re67NCHV9lChoBmgJaA9DCCJVFK+y5l5AlIaUUpRoFU3oA2gWR0CBGWkt29tedX2UKGgGaAloD0MIHF4QkZo8X0CUhpRSlGgVTegDaBZHQIEdTc2zfJp1fZQoaAZoCWgPQwjwNJnxthdcQJSGlFKUaBVN6ANoFkdAgSOubRWtEHV9lChoBmgJaA9DCCnni70X3xjAlIaUUpRoFUvPaBZHQIE6LmW+oLp1fZQoaAZoCWgPQwhNui2RC4xeQJSGlFKUaBVN6ANoFkdAgUL+hPCVKXV9lChoBmgJaA9DCIDSUKOQalpAlIaUUpRoFU3oA2gWR0CBWoAsCkoGdX2UKGgGaAloD0MIRwINNvUZYECUhpRSlGgVTegDaBZHQIGnzNB4Uvh1fZQoaAZoCWgPQwjJVpdTAoheQJSGlFKUaBVN6ANoFkdAgbCI2GZeA3V9lChoBmgJaA9DCMhD391KTGRAlIaUUpRoFU3oA2gWR0CBtSk30f5ldX2UKGgGaAloD0MIWi+GcqJHZECUhpRSlGgVTegDaBZHQIG/H6Eal1t1fZQoaAZoCWgPQwgIAI49e/9dQJSGlFKUaBVN6ANoFkdAgcbB2OhkAnV9lChoBmgJaA9DCHx/g/bq0lhAlIaUUpRoFU3oA2gWR0CByTuRcNYsdX2UKGgGaAloD0MIymyQScZbYECUhpRSlGgVTegDaBZHQIHP7IxQBPt1fZQoaAZoCWgPQwgdWfllMGtiQJSGlFKUaBVN6ANoFkdAgdvjebd8A3V9lChoBmgJaA9DCKdaC7PQGlJAlIaUUpRoFU3oA2gWR0CB3gPQv6CUdX2UKGgGaAloD0MIB14td2YpVkCUhpRSlGgVTegDaBZHQIHfAztTkyV1fZQoaAZoCWgPQwiRm+EGfF1YQJSGlFKUaBVN6ANoFkdAgeBsRYigTXV9lChoBmgJaA9DCMefqGxYQFZAlIaUUpRoFU3oA2gWR0CB6eavzOHGdX2UKGgGaAloD0MICW6kbJEFY0CUhpRSlGgVTegDaBZHQIHzUhzNliB1fZQoaAZoCWgPQwhxjjo6rtZdQJSGlFKUaBVN6ANoFkdAgghr61stTXV9lChoBmgJaA9DCJz6QPLOZ1lAlIaUUpRoFU3oA2gWR0CCEDZtelbedX2UKGgGaAloD0MIJXSXxFmXYECUhpRSlGgVTegDaBZHQIInqQRwqAl1fZQoaAZoCWgPQwiMD7OXbTFgQJSGlFKUaBVN6ANoFkdAgnVW5xzaK3V9lChoBmgJaA9DCG+bqRCPwE9AlIaUUpRoFU3oA2gWR0CCfpUPQOWjdX2UKGgGaAloD0MIP+WYLO7oXECUhpRSlGgVTegDaBZHQIKDhDohY/51fZQoaAZoCWgPQwitiQW+olFdQJSGlFKUaBVN6ANoFkdAgo3hZIQOF3V9lChoBmgJaA9DCEwW9x+ZelRAlIaUUpRoFU3oA2gWR0CClazFdcB2dX2UKGgGaAloD0MIF6BtNWs9YECUhpRSlGgVTegDaBZHQIKYPYjB2wF1fZQoaAZoCWgPQwjZX3ZPHrdXQJSGlFKUaBVN6ANoFkdAgp9KJEYwZnV9lChoBmgJaA9DCMtkOJ5P12BAlIaUUpRoFU3oA2gWR0CCrJ9deIEbdX2UKGgGaAloD0MIu3zrw3q7TkCUhpRSlGgVTegDaBZHQIKu6RW912d1fZQoaAZoCWgPQwjhfyvZsXU4QJSGlFKUaBVN6ANoFkdAgq/JJ5E+gXV9lChoBmgJaA9DCK4Mqg1OHCtAlIaUUpRoFUvXaBZHQIKwejwhGH51fZQoaAZoCWgPQwgib7n6MXhhQJSGlFKUaBVN6ANoFkdAgrFKVII4VHV9lChoBmgJaA9DCHNnJhjOUFZAlIaUUpRoFU3oA2gWR0CCu7lUZNwjdX2UKGgGaAloD0MITG4UWWsGWUCUhpRSlGgVTegDaBZHQILGdZcLSeB1fZQoaAZoCWgPQwiwcJLmj3FhQJSGlFKUaBVN6ANoFkdAgt297OVxCXV9lChoBmgJaA9DCEjgDz//6l1AlIaUUpRoFU3oA2gWR0CC5WsFt8/mdX2UKGgGaAloD0MIwAevXdqeYkCUhpRSlGgVTegDaBZHQIL7MrVe8f51fZQoaAZoCWgPQwjni70XX25DQJSGlFKUaBVL5GgWR0CDAMUs4DLbdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dd34afc7e0e9a80b3e9b686e4860f14abe4db527fab0b9c0f4d5bb38e16a926
3
+ size 84829
ppo-LunarLander-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85aa6a8d3d33000ac47f81ecc9a4b4296df57e213fcae4c081400855f8fdc1ef
3
+ size 43201
ppo-LunarLander-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:079da3591e47287ec113dfdffd66c65909792b1a186e8c558d2998ff4dae7bd4
3
+ size 248942
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 161.4575823590422, "std_reward": 79.54937233057731, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T14:09:50.323131"}