antonionieto
commited on
Commit
•
8216143
1
Parent(s):
30de9a2
Upload first version of Lunar lander
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v1.zip +3 -0
- ppo-LunarLander-v1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v1/data +94 -0
- ppo-LunarLander-v1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v1/policy.pth +3 -0
- ppo-LunarLander-v1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 161.46 +/- 79.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f747164db90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747164dc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747164dcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747164dd40>", "_build": "<function ActorCriticPolicy._build at 0x7f747164ddd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f747164de60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747164def0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f747164df80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7471655050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74716550e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7471655170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f747169a990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652277546.210248, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC0a6T5Mr8W9GM+KOpyjxDkPT/s+nuHwuQAAgD8AAIA/oEA4vmzfizwdxno8RTfeutJcFb7e6987AACAPwAAgD8zLYE9W7dpP0MWoD0s3Zi+HhIEvOZfhjwAAAAAAAAAABpiGj4CvqM/aFsAP7Vjmb5Gifs94SIsPQAAAAAAAAAAs8PRvSkMXLpiVhM8sFTUvK76IDtHKrq9AAAAAAAAgD+AA789SMWFuoHlOboASMG1SbkfO6BzUjkAAIA/AACAP2bO4j59Ux088k+SvMGXEDoGNti96cOxOwAAgD8AAIA/JuGLvRmEWD5kpru9HfBGvhT/Sj1DyPs9AAAAAAAAAABAh7o9Hz2cuV34DrbrQE4xZScOPJa5OjUAAIA/AACAPxbSo74PQlk9hdkdPALpL7pp5oK+802BuwAAgD8AAIA/Zg9KPrjz0LsPoq67V0g+OY50Rb0PcBs6AACAPwAAgD8zk5w+dEXLvFeWjDrsZ/y4s6UjvvHao7kAAIA/AACAP00Mr71IT6S6UIN6O9oaMbZ/Gtu6v96OugAAgD8AAIA/gG0TvSnoOrof46u7uvYLNTz87jnK53m0AACAPwAAgD/mtgI9FOSkusPqiLvOTB60rYHKuljOXDMAAIA/AACAP02DMz7sX8E8grKFvMFwJ7txpFE+tmw0vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7wcdt+7UkCUhpRSlIwBbJRN6AOMAXSUR0B9I964UeuFdX2UKGgGaAloD0MISra6nBLfVkCUhpRSlGgVTegDaBZHQH0oSkO7QLN1fZQoaAZoCWgPQwi+amXCL6lQQJSGlFKUaBVN6ANoFkdAfTjSQYDT0HV9lChoBmgJaA9DCFKZYg6C9ldAlIaUUpRoFU3oA2gWR0B9QFb9qDbrdX2UKGgGaAloD0MImQ0yycgUZUCUhpRSlGgVTegDaBZHQH1DOpfhMrV1fZQoaAZoCWgPQwgVAU7v4n9QQJSGlFKUaBVN6ANoFkdAfVgws5GSZHV9lChoBmgJaA9DCAd6qG3DQlpAlIaUUpRoFU3oA2gWR0B9bsLgGbCrdX2UKGgGaAloD0MIhSaJJeWkWsCUhpRSlGgVTZgBaBZHQH2xIoVmBe51fZQoaAZoCWgPQwhvnuqQm2VdQJSGlFKUaBVN6ANoFkdAfb7LuQZGa3V9lChoBmgJaA9DCLM/UG7bn2BAlIaUUpRoFU3oA2gWR0B+TQdU83dcdX2UKGgGaAloD0MIOLwgIjWFYkCUhpRSlGgVTegDaBZHQH5jNuk1uR91fZQoaAZoCWgPQwhDHVa45bpYQJSGlFKUaBVN6ANoFkdAfnBuieumrXV9lChoBmgJaA9DCI7pCUs8JDNAlIaUUpRoFUvqaBZHQH56GrsByS51fZQoaAZoCWgPQwhYc4BgjmJUQJSGlFKUaBVN6ANoFkdAfpEVXmvGInV9lChoBmgJaA9DCNeGinH+kVZAlIaUUpRoFU3oA2gWR0B+k2nTAnD0dX2UKGgGaAloD0MIZmfROxXnXUCUhpRSlGgVTegDaBZHQH6g7XL/0d11fZQoaAZoCWgPQwhdbjDUYclNQJSGlFKUaBVN6ANoFkdAfqLMrVe8f3V9lChoBmgJaA9DCJsb0xOW/1VAlIaUUpRoFU3oA2gWR0B+paGvfTCtdX2UKGgGaAloD0MI08H6P4d5LECUhpRSlGgVTQwBaBZHQH62rR0EHMV1fZQoaAZoCWgPQwhnuAGfH5RcQJSGlFKUaBVN6ANoFkdAfsN4oJAt4HV9lChoBmgJaA9DCCOhLedS/1RAlIaUUpRoFU3oA2gWR0B+x4tpVS4wdX2UKGgGaAloD0MIKdAn8iQtRUCUhpRSlGgVS9ZoFkdAftrXQtz0YnV9lChoBmgJaA9DCGABTBk4qGFAlIaUUpRoFU3oA2gWR0B+3HGipNsWdX2UKGgGaAloD0MI4Ln3cElRYUCUhpRSlGgVTegDaBZHQH7fLyH2ys11fZQoaAZoCWgPQwjysiYWeLdgQJSGlFKUaBVN6ANoFkdAfvNYiPhhpnV9lChoBmgJaA9DCJcd4h+22D7AlIaUUpRoFUvQaBZHQH76jXrdFfB1fZQoaAZoCWgPQwjIYTB/hZBYQJSGlFKUaBVN6ANoFkdAfwethuwX7HV9lChoBmgJaA9DCH45s12hkFlAlIaUUpRoFU3oA2gWR0B/RKB9Tgl4dX2UKGgGaAloD0MIC7YRT3bVXECUhpRSlGgVTegDaBZHQH/iTgEU0vZ1fZQoaAZoCWgPQwgOMV7zqtRjQJSGlFKUaBVN6ANoFkdAgAOjL0SRKnV9lChoBmgJaA9DCAYOaOkK4jtAlIaUUpRoFU3oA2gWR0CACOjdpItldX2UKGgGaAloD0MIAdvBiH2QV0CUhpRSlGgVTegDaBZHQIAUhIxxkup1fZQoaAZoCWgPQwiM2v0qwNVgQJSGlFKUaBVN6ANoFkdAgBWsqBmPHXV9lChoBmgJaA9DCPF+3H75S19AlIaUUpRoFU3oA2gWR0CAHJ3IMjNZdX2UKGgGaAloD0MIcCTQYFMDW0CUhpRSlGgVTegDaBZHQIAfRxm03Ox1fZQoaAZoCWgPQwjULNDukHpBQJSGlFKUaBVN6ANoFkdAgCgbc45tFnV9lChoBmgJaA9DCG743XTL2FZAlIaUUpRoFU3oA2gWR0CALpMWXTmXdX2UKGgGaAloD0MIgIKLFTXIFcCUhpRSlGgVS+FoFkdAgDXCCSRr8HV9lChoBmgJaA9DCGQgzy7fqifAlIaUUpRoFUvOaBZHQIA6YtUXHip1fZQoaAZoCWgPQwgdHVcju5BiQJSGlFKUaBVN6ANoFkdAgDx4wyqMnHV9lChoBmgJaA9DCJfGL7ySqllAlIaUUpRoFU3oA2gWR0CAPVj2i+L4dX2UKGgGaAloD0MIr7FLVG9NZECUhpRSlGgVTegDaBZHQIA+7yYoiLV1fZQoaAZoCWgPQwg9LNSa5gZYQJSGlFKUaBVN6ANoFkdAgEmFRP420nV9lChoBmgJaA9DCHDpmPMMc2FAlIaUUpRoFU3oA2gWR0CATSG/vfCRdX2UKGgGaAloD0MI9Wc/UkQXYECUhpRSlGgVTegDaBZHQIBToK0D2al1fZQoaAZoCWgPQwj6CPzh58lXQJSGlFKUaBVN6ANoFkdAgHK+/pMYdnV9lChoBmgJaA9DCLaeIRyza2xAlIaUUpRoFU3kAWgWR0CAewy31BdEdX2UKGgGaAloD0MIg9pv7UTHVkCUhpRSlGgVTegDaBZHQIC/G6qbSZ11fZQoaAZoCWgPQwhQOpFgqvFdQJSGlFKUaBVN6ANoFkdAgNDO0LMLW3V9lChoBmgJaA9DCGIuqdpuQVxAlIaUUpRoFU3oA2gWR0CA1af/WDpUdX2UKGgGaAloD0MIJt9sc2PaCkCUhpRSlGgVTQ8BaBZHQIDdyrR0EHN1fZQoaAZoCWgPQwgIy9jQzfVaQJSGlFKUaBVN6ANoFkdAgOJUyYXwb3V9lChoBmgJaA9DCFpo5zQLoVhAlIaUUpRoFU3oA2gWR0CA7LWilBQfdX2UKGgGaAloD0MI+MYQABwjIkCUhpRSlGgVS9VoFkdAgPRXyy2QXHV9lChoBmgJaA9DCHCWkuUkQF1AlIaUUpRoFU3oA2gWR0CA9shysCDFdX2UKGgGaAloD0MI3q0s0dm7YECUhpRSlGgVTegDaBZHQID9mivgWJt1fZQoaAZoCWgPQwiZ2HxcG/ddQJSGlFKUaBVN6ANoFkdAgQnG8dxQznV9lChoBmgJaA9DCMf0hCUehWRAlIaUUpRoFU3oA2gWR0CBC+IznA6/dX2UKGgGaAloD0MIoUrNHuhJZECUhpRSlGgVTegDaBZHQIEMyl+EytV1fZQoaAZoCWgPQwha2NMOf1xgQJSGlFKUaBVN6ANoFkdAgQ5re67NCHV9lChoBmgJaA9DCCJVFK+y5l5AlIaUUpRoFU3oA2gWR0CBGWkt29tedX2UKGgGaAloD0MIHF4QkZo8X0CUhpRSlGgVTegDaBZHQIEdTc2zfJp1fZQoaAZoCWgPQwjwNJnxthdcQJSGlFKUaBVN6ANoFkdAgSOubRWtEHV9lChoBmgJaA9DCCnni70X3xjAlIaUUpRoFUvPaBZHQIE6LmW+oLp1fZQoaAZoCWgPQwhNui2RC4xeQJSGlFKUaBVN6ANoFkdAgUL+hPCVKXV9lChoBmgJaA9DCIDSUKOQalpAlIaUUpRoFU3oA2gWR0CBWoAsCkoGdX2UKGgGaAloD0MIRwINNvUZYECUhpRSlGgVTegDaBZHQIGnzNB4Uvh1fZQoaAZoCWgPQwjJVpdTAoheQJSGlFKUaBVN6ANoFkdAgbCI2GZeA3V9lChoBmgJaA9DCMhD391KTGRAlIaUUpRoFU3oA2gWR0CBtSk30f5ldX2UKGgGaAloD0MIWi+GcqJHZECUhpRSlGgVTegDaBZHQIG/H6Eal1t1fZQoaAZoCWgPQwgIAI49e/9dQJSGlFKUaBVN6ANoFkdAgcbB2OhkAnV9lChoBmgJaA9DCHx/g/bq0lhAlIaUUpRoFU3oA2gWR0CByTuRcNYsdX2UKGgGaAloD0MIymyQScZbYECUhpRSlGgVTegDaBZHQIHP7IxQBPt1fZQoaAZoCWgPQwgdWfllMGtiQJSGlFKUaBVN6ANoFkdAgdvjebd8A3V9lChoBmgJaA9DCKdaC7PQGlJAlIaUUpRoFU3oA2gWR0CB3gPQv6CUdX2UKGgGaAloD0MIB14td2YpVkCUhpRSlGgVTegDaBZHQIHfAztTkyV1fZQoaAZoCWgPQwiRm+EGfF1YQJSGlFKUaBVN6ANoFkdAgeBsRYigTXV9lChoBmgJaA9DCMefqGxYQFZAlIaUUpRoFU3oA2gWR0CB6eavzOHGdX2UKGgGaAloD0MICW6kbJEFY0CUhpRSlGgVTegDaBZHQIHzUhzNliB1fZQoaAZoCWgPQwhxjjo6rtZdQJSGlFKUaBVN6ANoFkdAgghr61stTXV9lChoBmgJaA9DCJz6QPLOZ1lAlIaUUpRoFU3oA2gWR0CCEDZtelbedX2UKGgGaAloD0MIJXSXxFmXYECUhpRSlGgVTegDaBZHQIInqQRwqAl1fZQoaAZoCWgPQwiMD7OXbTFgQJSGlFKUaBVN6ANoFkdAgnVW5xzaK3V9lChoBmgJaA9DCG+bqRCPwE9AlIaUUpRoFU3oA2gWR0CCfpUPQOWjdX2UKGgGaAloD0MIP+WYLO7oXECUhpRSlGgVTegDaBZHQIKDhDohY/51fZQoaAZoCWgPQwitiQW+olFdQJSGlFKUaBVN6ANoFkdAgo3hZIQOF3V9lChoBmgJaA9DCEwW9x+ZelRAlIaUUpRoFU3oA2gWR0CClazFdcB2dX2UKGgGaAloD0MIF6BtNWs9YECUhpRSlGgVTegDaBZHQIKYPYjB2wF1fZQoaAZoCWgPQwjZX3ZPHrdXQJSGlFKUaBVN6ANoFkdAgp9KJEYwZnV9lChoBmgJaA9DCMtkOJ5P12BAlIaUUpRoFU3oA2gWR0CCrJ9deIEbdX2UKGgGaAloD0MIu3zrw3q7TkCUhpRSlGgVTegDaBZHQIKu6RW912d1fZQoaAZoCWgPQwjhfyvZsXU4QJSGlFKUaBVN6ANoFkdAgq/JJ5E+gXV9lChoBmgJaA9DCK4Mqg1OHCtAlIaUUpRoFUvXaBZHQIKwejwhGH51fZQoaAZoCWgPQwgib7n6MXhhQJSGlFKUaBVN6ANoFkdAgrFKVII4VHV9lChoBmgJaA9DCHNnJhjOUFZAlIaUUpRoFU3oA2gWR0CCu7lUZNwjdX2UKGgGaAloD0MITG4UWWsGWUCUhpRSlGgVTegDaBZHQILGdZcLSeB1fZQoaAZoCWgPQwiwcJLmj3FhQJSGlFKUaBVN6ANoFkdAgt297OVxCXV9lChoBmgJaA9DCEjgDz//6l1AlIaUUpRoFU3oA2gWR0CC5WsFt8/mdX2UKGgGaAloD0MIwAevXdqeYkCUhpRSlGgVTegDaBZHQIL7MrVe8f51fZQoaAZoCWgPQwjni70XX25DQJSGlFKUaBVL5GgWR0CDAMUs4DLbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:810899bfc6edb90029d261b831bb18b12447d7270a0d90702d6d13fe7c039edc
|
3 |
+
size 144035
|
ppo-LunarLander-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f747164db90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747164dc20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747164dcb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747164dd40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f747164ddd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f747164de60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747164def0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f747164df80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7471655050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74716550e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7471655170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f747169a990>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652277546.210248,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC0a6T5Mr8W9GM+KOpyjxDkPT/s+nuHwuQAAgD8AAIA/oEA4vmzfizwdxno8RTfeutJcFb7e6987AACAPwAAgD8zLYE9W7dpP0MWoD0s3Zi+HhIEvOZfhjwAAAAAAAAAABpiGj4CvqM/aFsAP7Vjmb5Gifs94SIsPQAAAAAAAAAAs8PRvSkMXLpiVhM8sFTUvK76IDtHKrq9AAAAAAAAgD+AA789SMWFuoHlOboASMG1SbkfO6BzUjkAAIA/AACAP2bO4j59Ux088k+SvMGXEDoGNti96cOxOwAAgD8AAIA/JuGLvRmEWD5kpru9HfBGvhT/Sj1DyPs9AAAAAAAAAABAh7o9Hz2cuV34DrbrQE4xZScOPJa5OjUAAIA/AACAPxbSo74PQlk9hdkdPALpL7pp5oK+802BuwAAgD8AAIA/Zg9KPrjz0LsPoq67V0g+OY50Rb0PcBs6AACAPwAAgD8zk5w+dEXLvFeWjDrsZ/y4s6UjvvHao7kAAIA/AACAP00Mr71IT6S6UIN6O9oaMbZ/Gtu6v96OugAAgD8AAIA/gG0TvSnoOrof46u7uvYLNTz87jnK53m0AACAPwAAgD/mtgI9FOSkusPqiLvOTB60rYHKuljOXDMAAIA/AACAP02DMz7sX8E8grKFvMFwJ7txpFE+tmw0vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7wcdt+7UkCUhpRSlIwBbJRN6AOMAXSUR0B9I964UeuFdX2UKGgGaAloD0MISra6nBLfVkCUhpRSlGgVTegDaBZHQH0oSkO7QLN1fZQoaAZoCWgPQwi+amXCL6lQQJSGlFKUaBVN6ANoFkdAfTjSQYDT0HV9lChoBmgJaA9DCFKZYg6C9ldAlIaUUpRoFU3oA2gWR0B9QFb9qDbrdX2UKGgGaAloD0MImQ0yycgUZUCUhpRSlGgVTegDaBZHQH1DOpfhMrV1fZQoaAZoCWgPQwgVAU7v4n9QQJSGlFKUaBVN6ANoFkdAfVgws5GSZHV9lChoBmgJaA9DCAd6qG3DQlpAlIaUUpRoFU3oA2gWR0B9bsLgGbCrdX2UKGgGaAloD0MIhSaJJeWkWsCUhpRSlGgVTZgBaBZHQH2xIoVmBe51fZQoaAZoCWgPQwhvnuqQm2VdQJSGlFKUaBVN6ANoFkdAfb7LuQZGa3V9lChoBmgJaA9DCLM/UG7bn2BAlIaUUpRoFU3oA2gWR0B+TQdU83dcdX2UKGgGaAloD0MIOLwgIjWFYkCUhpRSlGgVTegDaBZHQH5jNuk1uR91fZQoaAZoCWgPQwhDHVa45bpYQJSGlFKUaBVN6ANoFkdAfnBuieumrXV9lChoBmgJaA9DCI7pCUs8JDNAlIaUUpRoFUvqaBZHQH56GrsByS51fZQoaAZoCWgPQwhYc4BgjmJUQJSGlFKUaBVN6ANoFkdAfpEVXmvGInV9lChoBmgJaA9DCNeGinH+kVZAlIaUUpRoFU3oA2gWR0B+k2nTAnD0dX2UKGgGaAloD0MIZmfROxXnXUCUhpRSlGgVTegDaBZHQH6g7XL/0d11fZQoaAZoCWgPQwhdbjDUYclNQJSGlFKUaBVN6ANoFkdAfqLMrVe8f3V9lChoBmgJaA9DCJsb0xOW/1VAlIaUUpRoFU3oA2gWR0B+paGvfTCtdX2UKGgGaAloD0MI08H6P4d5LECUhpRSlGgVTQwBaBZHQH62rR0EHMV1fZQoaAZoCWgPQwhnuAGfH5RcQJSGlFKUaBVN6ANoFkdAfsN4oJAt4HV9lChoBmgJaA9DCCOhLedS/1RAlIaUUpRoFU3oA2gWR0B+x4tpVS4wdX2UKGgGaAloD0MIKdAn8iQtRUCUhpRSlGgVS9ZoFkdAftrXQtz0YnV9lChoBmgJaA9DCGABTBk4qGFAlIaUUpRoFU3oA2gWR0B+3HGipNsWdX2UKGgGaAloD0MI4Ln3cElRYUCUhpRSlGgVTegDaBZHQH7fLyH2ys11fZQoaAZoCWgPQwjysiYWeLdgQJSGlFKUaBVN6ANoFkdAfvNYiPhhpnV9lChoBmgJaA9DCJcd4h+22D7AlIaUUpRoFUvQaBZHQH76jXrdFfB1fZQoaAZoCWgPQwjIYTB/hZBYQJSGlFKUaBVN6ANoFkdAfwethuwX7HV9lChoBmgJaA9DCH45s12hkFlAlIaUUpRoFU3oA2gWR0B/RKB9Tgl4dX2UKGgGaAloD0MIC7YRT3bVXECUhpRSlGgVTegDaBZHQH/iTgEU0vZ1fZQoaAZoCWgPQwgOMV7zqtRjQJSGlFKUaBVN6ANoFkdAgAOjL0SRKnV9lChoBmgJaA9DCAYOaOkK4jtAlIaUUpRoFU3oA2gWR0CACOjdpItldX2UKGgGaAloD0MIAdvBiH2QV0CUhpRSlGgVTegDaBZHQIAUhIxxkup1fZQoaAZoCWgPQwiM2v0qwNVgQJSGlFKUaBVN6ANoFkdAgBWsqBmPHXV9lChoBmgJaA9DCPF+3H75S19AlIaUUpRoFU3oA2gWR0CAHJ3IMjNZdX2UKGgGaAloD0MIcCTQYFMDW0CUhpRSlGgVTegDaBZHQIAfRxm03Ox1fZQoaAZoCWgPQwjULNDukHpBQJSGlFKUaBVN6ANoFkdAgCgbc45tFnV9lChoBmgJaA9DCG743XTL2FZAlIaUUpRoFU3oA2gWR0CALpMWXTmXdX2UKGgGaAloD0MIgIKLFTXIFcCUhpRSlGgVS+FoFkdAgDXCCSRr8HV9lChoBmgJaA9DCGQgzy7fqifAlIaUUpRoFUvOaBZHQIA6YtUXHip1fZQoaAZoCWgPQwgdHVcju5BiQJSGlFKUaBVN6ANoFkdAgDx4wyqMnHV9lChoBmgJaA9DCJfGL7ySqllAlIaUUpRoFU3oA2gWR0CAPVj2i+L4dX2UKGgGaAloD0MIr7FLVG9NZECUhpRSlGgVTegDaBZHQIA+7yYoiLV1fZQoaAZoCWgPQwg9LNSa5gZYQJSGlFKUaBVN6ANoFkdAgEmFRP420nV9lChoBmgJaA9DCHDpmPMMc2FAlIaUUpRoFU3oA2gWR0CATSG/vfCRdX2UKGgGaAloD0MI9Wc/UkQXYECUhpRSlGgVTegDaBZHQIBToK0D2al1fZQoaAZoCWgPQwj6CPzh58lXQJSGlFKUaBVN6ANoFkdAgHK+/pMYdnV9lChoBmgJaA9DCLaeIRyza2xAlIaUUpRoFU3kAWgWR0CAewy31BdEdX2UKGgGaAloD0MIg9pv7UTHVkCUhpRSlGgVTegDaBZHQIC/G6qbSZ11fZQoaAZoCWgPQwhQOpFgqvFdQJSGlFKUaBVN6ANoFkdAgNDO0LMLW3V9lChoBmgJaA9DCGIuqdpuQVxAlIaUUpRoFU3oA2gWR0CA1af/WDpUdX2UKGgGaAloD0MIJt9sc2PaCkCUhpRSlGgVTQ8BaBZHQIDdyrR0EHN1fZQoaAZoCWgPQwgIy9jQzfVaQJSGlFKUaBVN6ANoFkdAgOJUyYXwb3V9lChoBmgJaA9DCFpo5zQLoVhAlIaUUpRoFU3oA2gWR0CA7LWilBQfdX2UKGgGaAloD0MI+MYQABwjIkCUhpRSlGgVS9VoFkdAgPRXyy2QXHV9lChoBmgJaA9DCHCWkuUkQF1AlIaUUpRoFU3oA2gWR0CA9shysCDFdX2UKGgGaAloD0MI3q0s0dm7YECUhpRSlGgVTegDaBZHQID9mivgWJt1fZQoaAZoCWgPQwiZ2HxcG/ddQJSGlFKUaBVN6ANoFkdAgQnG8dxQznV9lChoBmgJaA9DCMf0hCUehWRAlIaUUpRoFU3oA2gWR0CBC+IznA6/dX2UKGgGaAloD0MIoUrNHuhJZECUhpRSlGgVTegDaBZHQIEMyl+EytV1fZQoaAZoCWgPQwha2NMOf1xgQJSGlFKUaBVN6ANoFkdAgQ5re67NCHV9lChoBmgJaA9DCCJVFK+y5l5AlIaUUpRoFU3oA2gWR0CBGWkt29tedX2UKGgGaAloD0MIHF4QkZo8X0CUhpRSlGgVTegDaBZHQIEdTc2zfJp1fZQoaAZoCWgPQwjwNJnxthdcQJSGlFKUaBVN6ANoFkdAgSOubRWtEHV9lChoBmgJaA9DCCnni70X3xjAlIaUUpRoFUvPaBZHQIE6LmW+oLp1fZQoaAZoCWgPQwhNui2RC4xeQJSGlFKUaBVN6ANoFkdAgUL+hPCVKXV9lChoBmgJaA9DCIDSUKOQalpAlIaUUpRoFU3oA2gWR0CBWoAsCkoGdX2UKGgGaAloD0MIRwINNvUZYECUhpRSlGgVTegDaBZHQIGnzNB4Uvh1fZQoaAZoCWgPQwjJVpdTAoheQJSGlFKUaBVN6ANoFkdAgbCI2GZeA3V9lChoBmgJaA9DCMhD391KTGRAlIaUUpRoFU3oA2gWR0CBtSk30f5ldX2UKGgGaAloD0MIWi+GcqJHZECUhpRSlGgVTegDaBZHQIG/H6Eal1t1fZQoaAZoCWgPQwgIAI49e/9dQJSGlFKUaBVN6ANoFkdAgcbB2OhkAnV9lChoBmgJaA9DCHx/g/bq0lhAlIaUUpRoFU3oA2gWR0CByTuRcNYsdX2UKGgGaAloD0MIymyQScZbYECUhpRSlGgVTegDaBZHQIHP7IxQBPt1fZQoaAZoCWgPQwgdWfllMGtiQJSGlFKUaBVN6ANoFkdAgdvjebd8A3V9lChoBmgJaA9DCKdaC7PQGlJAlIaUUpRoFU3oA2gWR0CB3gPQv6CUdX2UKGgGaAloD0MIB14td2YpVkCUhpRSlGgVTegDaBZHQIHfAztTkyV1fZQoaAZoCWgPQwiRm+EGfF1YQJSGlFKUaBVN6ANoFkdAgeBsRYigTXV9lChoBmgJaA9DCMefqGxYQFZAlIaUUpRoFU3oA2gWR0CB6eavzOHGdX2UKGgGaAloD0MICW6kbJEFY0CUhpRSlGgVTegDaBZHQIHzUhzNliB1fZQoaAZoCWgPQwhxjjo6rtZdQJSGlFKUaBVN6ANoFkdAgghr61stTXV9lChoBmgJaA9DCJz6QPLOZ1lAlIaUUpRoFU3oA2gWR0CCEDZtelbedX2UKGgGaAloD0MIJXSXxFmXYECUhpRSlGgVTegDaBZHQIInqQRwqAl1fZQoaAZoCWgPQwiMD7OXbTFgQJSGlFKUaBVN6ANoFkdAgnVW5xzaK3V9lChoBmgJaA9DCG+bqRCPwE9AlIaUUpRoFU3oA2gWR0CCfpUPQOWjdX2UKGgGaAloD0MIP+WYLO7oXECUhpRSlGgVTegDaBZHQIKDhDohY/51fZQoaAZoCWgPQwitiQW+olFdQJSGlFKUaBVN6ANoFkdAgo3hZIQOF3V9lChoBmgJaA9DCEwW9x+ZelRAlIaUUpRoFU3oA2gWR0CClazFdcB2dX2UKGgGaAloD0MIF6BtNWs9YECUhpRSlGgVTegDaBZHQIKYPYjB2wF1fZQoaAZoCWgPQwjZX3ZPHrdXQJSGlFKUaBVN6ANoFkdAgp9KJEYwZnV9lChoBmgJaA9DCMtkOJ5P12BAlIaUUpRoFU3oA2gWR0CCrJ9deIEbdX2UKGgGaAloD0MIu3zrw3q7TkCUhpRSlGgVTegDaBZHQIKu6RW912d1fZQoaAZoCWgPQwjhfyvZsXU4QJSGlFKUaBVN6ANoFkdAgq/JJ5E+gXV9lChoBmgJaA9DCK4Mqg1OHCtAlIaUUpRoFUvXaBZHQIKwejwhGH51fZQoaAZoCWgPQwgib7n6MXhhQJSGlFKUaBVN6ANoFkdAgrFKVII4VHV9lChoBmgJaA9DCHNnJhjOUFZAlIaUUpRoFU3oA2gWR0CCu7lUZNwjdX2UKGgGaAloD0MITG4UWWsGWUCUhpRSlGgVTegDaBZHQILGdZcLSeB1fZQoaAZoCWgPQwiwcJLmj3FhQJSGlFKUaBVN6ANoFkdAgt297OVxCXV9lChoBmgJaA9DCEjgDz//6l1AlIaUUpRoFU3oA2gWR0CC5WsFt8/mdX2UKGgGaAloD0MIwAevXdqeYkCUhpRSlGgVTegDaBZHQIL7MrVe8f51fZQoaAZoCWgPQwjni70XX25DQJSGlFKUaBVL5GgWR0CDAMUs4DLbdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dd34afc7e0e9a80b3e9b686e4860f14abe4db527fab0b9c0f4d5bb38e16a926
|
3 |
+
size 84829
|
ppo-LunarLander-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85aa6a8d3d33000ac47f81ecc9a4b4296df57e213fcae4c081400855f8fdc1ef
|
3 |
+
size 43201
|
ppo-LunarLander-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:079da3591e47287ec113dfdffd66c65909792b1a186e8c558d2998ff4dae7bd4
|
3 |
+
size 248942
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 161.4575823590422, "std_reward": 79.54937233057731, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T14:09:50.323131"}
|