anton-l HF staff commited on
Commit
d3d9e0b
1 Parent(s): c766d43

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: xtreme_s_xlsr_minds14
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # xtreme_s_xlsr_minds14
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2566
20
+ - F1: {'f1': 0.9460569664921582, 'accuracy': 0.9468540012217471}
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 2
45
+ - total_train_batch_size: 64
46
+ - total_eval_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 1500
50
+ - num_epochs: 50.0
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|
57
+ | 2.551 | 2.7 | 200 | 2.5921 | {'f1': 0.03454307545755678, 'accuracy': 0.1148442272449603} |
58
+ | 1.6934 | 5.41 | 400 | 1.5353 | {'f1': 0.5831241711045994, 'accuracy': 0.6053756872327428} |
59
+ | 0.5914 | 8.11 | 600 | 0.7337 | {'f1': 0.7990425247664236, 'accuracy': 0.7947464874770922} |
60
+ | 0.3896 | 10.81 | 800 | 0.5076 | {'f1': 0.8738199236080776, 'accuracy': 0.872327428222358} |
61
+ | 0.5052 | 13.51 | 1000 | 0.4917 | {'f1': 0.8744760456867134, 'accuracy': 0.8747709224190593} |
62
+ | 0.4806 | 16.22 | 1200 | 0.4751 | {'f1': 0.8840798740258787, 'accuracy': 0.8845448992058644} |
63
+ | 0.2103 | 18.92 | 1400 | 0.5228 | {'f1': 0.8721632556623751, 'accuracy': 0.8729383017715333} |
64
+ | 0.4198 | 21.62 | 1600 | 0.5910 | {'f1': 0.8755207264572983, 'accuracy': 0.8766035430665852} |
65
+ | 0.11 | 24.32 | 1800 | 0.4464 | {'f1': 0.896423086249818, 'accuracy': 0.8955406230910201} |
66
+ | 0.1233 | 27.03 | 2000 | 0.3760 | {'f1': 0.9012283567348968, 'accuracy': 0.9016493585827734} |
67
+ | 0.1827 | 29.73 | 2200 | 0.4178 | {'f1': 0.9042381720184095, 'accuracy': 0.9059254734270006} |
68
+ | 0.1235 | 32.43 | 2400 | 0.4152 | {'f1': 0.9063257163259107, 'accuracy': 0.9071472205253512} |
69
+ | 0.1873 | 35.14 | 2600 | 0.2903 | {'f1': 0.9369340598806323, 'accuracy': 0.9376908979841173} |
70
+ | 0.017 | 37.84 | 2800 | 0.3046 | {'f1': 0.9300781160576355, 'accuracy': 0.9303604153940135} |
71
+ | 0.0436 | 40.54 | 3000 | 0.3111 | {'f1': 0.9315034391389341, 'accuracy': 0.9321930360415394} |
72
+ | 0.0455 | 43.24 | 3200 | 0.2748 | {'f1': 0.9417365311433034, 'accuracy': 0.9425778863775198} |
73
+ | 0.046 | 45.95 | 3400 | 0.2800 | {'f1': 0.9390712658440112, 'accuracy': 0.9395235186316433} |
74
+ | 0.0042 | 48.65 | 3600 | 0.2566 | {'f1': 0.9460569664921582, 'accuracy': 0.9468540012217471} |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.18.0.dev0
80
+ - Pytorch 1.10.2+cu113
81
+ - Datasets 1.18.4.dev0
82
+ - Tokenizers 0.11.6