update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: xtreme_s_xlsr_minds14
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xtreme_s_xlsr_minds14
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2566
|
20 |
+
- F1: {'f1': 0.9460569664921582, 'accuracy': 0.9468540012217471}
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- distributed_type: multi-GPU
|
44 |
+
- num_devices: 2
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- total_eval_batch_size: 16
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 1500
|
50 |
+
- num_epochs: 50.0
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|
|
57 |
+
| 2.551 | 2.7 | 200 | 2.5921 | {'f1': 0.03454307545755678, 'accuracy': 0.1148442272449603} |
|
58 |
+
| 1.6934 | 5.41 | 400 | 1.5353 | {'f1': 0.5831241711045994, 'accuracy': 0.6053756872327428} |
|
59 |
+
| 0.5914 | 8.11 | 600 | 0.7337 | {'f1': 0.7990425247664236, 'accuracy': 0.7947464874770922} |
|
60 |
+
| 0.3896 | 10.81 | 800 | 0.5076 | {'f1': 0.8738199236080776, 'accuracy': 0.872327428222358} |
|
61 |
+
| 0.5052 | 13.51 | 1000 | 0.4917 | {'f1': 0.8744760456867134, 'accuracy': 0.8747709224190593} |
|
62 |
+
| 0.4806 | 16.22 | 1200 | 0.4751 | {'f1': 0.8840798740258787, 'accuracy': 0.8845448992058644} |
|
63 |
+
| 0.2103 | 18.92 | 1400 | 0.5228 | {'f1': 0.8721632556623751, 'accuracy': 0.8729383017715333} |
|
64 |
+
| 0.4198 | 21.62 | 1600 | 0.5910 | {'f1': 0.8755207264572983, 'accuracy': 0.8766035430665852} |
|
65 |
+
| 0.11 | 24.32 | 1800 | 0.4464 | {'f1': 0.896423086249818, 'accuracy': 0.8955406230910201} |
|
66 |
+
| 0.1233 | 27.03 | 2000 | 0.3760 | {'f1': 0.9012283567348968, 'accuracy': 0.9016493585827734} |
|
67 |
+
| 0.1827 | 29.73 | 2200 | 0.4178 | {'f1': 0.9042381720184095, 'accuracy': 0.9059254734270006} |
|
68 |
+
| 0.1235 | 32.43 | 2400 | 0.4152 | {'f1': 0.9063257163259107, 'accuracy': 0.9071472205253512} |
|
69 |
+
| 0.1873 | 35.14 | 2600 | 0.2903 | {'f1': 0.9369340598806323, 'accuracy': 0.9376908979841173} |
|
70 |
+
| 0.017 | 37.84 | 2800 | 0.3046 | {'f1': 0.9300781160576355, 'accuracy': 0.9303604153940135} |
|
71 |
+
| 0.0436 | 40.54 | 3000 | 0.3111 | {'f1': 0.9315034391389341, 'accuracy': 0.9321930360415394} |
|
72 |
+
| 0.0455 | 43.24 | 3200 | 0.2748 | {'f1': 0.9417365311433034, 'accuracy': 0.9425778863775198} |
|
73 |
+
| 0.046 | 45.95 | 3400 | 0.2800 | {'f1': 0.9390712658440112, 'accuracy': 0.9395235186316433} |
|
74 |
+
| 0.0042 | 48.65 | 3600 | 0.2566 | {'f1': 0.9460569664921582, 'accuracy': 0.9468540012217471} |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.18.0.dev0
|
80 |
+
- Pytorch 1.10.2+cu113
|
81 |
+
- Datasets 1.18.4.dev0
|
82 |
+
- Tokenizers 0.11.6
|