speech-test commited on
Commit
fc13f44
1 Parent(s): 87491cf

Flexible resampling

Browse files
Files changed (1) hide show
  1. README.md +4 -6
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 32.43
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Ukrainian
@@ -82,7 +82,7 @@ from tqdm.auto import tqdm
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
- # Download the raw data instead of using HF datasets to save space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/uk.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
@@ -107,14 +107,13 @@ def clean_sentence(sent):
107
  sent = " ".join(sent.split())
108
  return sent
109
 
110
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
111
-
112
  targets = []
113
  preds = []
114
 
115
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
116
  row["sentence"] = clean_sentence(row["sentence"])
117
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
 
118
  row["speech"] = resampler(speech_array).squeeze().numpy()
119
 
120
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
@@ -130,11 +129,10 @@ for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
130
  print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
131
  ```
132
 
133
- **Test Result**: 32.43 %
134
 
135
 
136
  ## Training
137
 
138
  The Common Voice `train` and `validation` datasets were used for training.
139
 
140
- The script used for training can be found [here](github.com)
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 32.29
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Ukrainian
 
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
+ # Download the raw data instead of using HF datasets to save disk space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/uk.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
 
107
  sent = " ".join(sent.split())
108
  return sent
109
 
 
 
110
  targets = []
111
  preds = []
112
 
113
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
114
  row["sentence"] = clean_sentence(row["sentence"])
115
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
116
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
117
  row["speech"] = resampler(speech_array).squeeze().numpy()
118
 
119
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
 
129
  print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
130
  ```
131
 
132
+ **Test Result**: 32.29 %
133
 
134
 
135
  ## Training
136
 
137
  The Common Voice `train` and `validation` datasets were used for training.
138