antoinelouis
commited on
Commit
·
d9d75be
1
Parent(s):
6fcb883
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +123 -0
- config.json +33 -0
- dev_scores.csv +2 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +19 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
language: fr
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- unicamp-dl/mmarco
|
7 |
+
metrics:
|
8 |
+
- recall
|
9 |
+
tags:
|
10 |
+
- sentence-similarity
|
11 |
+
library_name: sentence-transformers
|
12 |
+
---
|
13 |
+
# crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR
|
14 |
+
|
15 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset.
|
16 |
+
|
17 |
+
It performs cross-attention between a question-passage pair and outputs a relevance score between 0 and 1. The model can be used for tasks like clustering or [semantic search]((https://www.sbert.net/examples/applications/retrieve_rerank/README.html): given a query, encode the latter with some candidate passages -- e.g., retrieved with BM25 or a biencoder -- then sort the passages in a decreasing order of relevance according to the model's predictions.
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
***
|
21 |
+
|
22 |
+
#### Sentence-Transformers
|
23 |
+
|
24 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
25 |
+
|
26 |
+
```bash
|
27 |
+
pip install -U sentence-transformers
|
28 |
+
```
|
29 |
+
|
30 |
+
Then you can use the model like this:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from sentence_transformers import CrossEncoder
|
34 |
+
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
35 |
+
|
36 |
+
model = CrossEncoder('crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
|
37 |
+
scores = model.predict(pairs)
|
38 |
+
print(scores)
|
39 |
+
```
|
40 |
+
|
41 |
+
#### 🤗 Transformers
|
42 |
+
|
43 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model as follows:
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
47 |
+
import torch
|
48 |
+
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained('crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained('crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR')
|
51 |
+
|
52 |
+
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
53 |
+
features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
54 |
+
|
55 |
+
model.eval()
|
56 |
+
with torch.no_grad():
|
57 |
+
scores = model(**features).logits
|
58 |
+
print(scores)
|
59 |
+
```
|
60 |
+
|
61 |
+
## Evaluation
|
62 |
+
***
|
63 |
+
|
64 |
+
We evaluated our model on 500 random queries from the mMARCO-fr train set (which were excluded from training). Each of these queries has at least one relevant and up to 200 irrelevant passages.
|
65 |
+
|
66 |
+
| r-precision | mrr@10 | recall@10 | recall@20 | recall@50 | recall@100 |
|
67 |
+
|--------------:|---------:|------------:|------------:|------------:|-------------:|
|
68 |
+
| 33.92 | 49.33 | 79 | 88.35 | 94.8 | 98.2 |
|
69 |
+
|
70 |
+
Below, we compared its results with other cross-encoder models fine-tuned on the same dataset:
|
71 |
+
| | model | r-precision | mrr@10 | recall@10 (↑) | recall@20 | recall@50 | recall@100 |
|
72 |
+
|---:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------:|---------:|------------:|------------:|------------:|-------------:|
|
73 |
+
| 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 35.65 | 50.44 | 82.95 | 91.5 | 96.8 | 98.8 |
|
74 |
+
| 2 | [crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR) | 34.37 | 51.01 | 82.23 | 90.6 | 96.45 | 98.4 |
|
75 |
+
| 3 | [crossencoder-mmarcoFR-mMiniLMv2-L12-H384-v1-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mmarcoFR-mMiniLMv2-L12-H384-v1-mmarcoFR) | 34.22 | 49.2 | 81.7 | 90.9 | 97.1 | 98.9 |
|
76 |
+
| 4 | [crossencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mpnet-base-mmarcoFR) | 29.68 | 46.13 | 80.45 | 87.9 | 93.15 | 96.6 |
|
77 |
+
| 5 | [crossencoder-distilcamembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-base-mmarcoFR) | 27.28 | 43.71 | 80.3 | 89.1 | 95.55 | 98.6 |
|
78 |
+
| 6 | [crossencoder-roberta-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-roberta-base-mmarcoFR) | 33.33 | 48.87 | 79.33 | 86.75 | 94.15 | 97.6 |
|
79 |
+
| 7 | [crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR) | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 |
|
80 |
+
| 8 | **crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR** | 33.92 | 49.33 | 79 | 88.35 | 94.8 | 98.2 |
|
81 |
+
| 9 | [crossencoder-msmarco-electra-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-electra-base-mmarcoFR) | 25.52 | 42.46 | 78.73 | 88.85 | 96.55 | 98.85 |
|
82 |
+
| 10 | [crossencoder-bert-base-uncased-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-bert-base-uncased-mmarcoFR) | 30.48 | 45.79 | 78.35 | 89.45 | 94.15 | 97.45 |
|
83 |
+
| 11 | [crossencoder-msmarco-MiniLM-L-12-v2-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-MiniLM-L-12-v2-mmarcoFR) | 29.07 | 44.41 | 77.83 | 88.1 | 95.55 | 99 |
|
84 |
+
| 12 | [crossencoder-msmarco-MiniLM-L-6-v2-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-MiniLM-L-6-v2-mmarcoFR) | 32.92 | 47.56 | 77.27 | 88.15 | 94.85 | 98.15 |
|
85 |
+
| 13 | [crossencoder-msmarco-MiniLM-L-4-v2-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-MiniLM-L-4-v2-mmarcoFR) | 30.98 | 46.22 | 76.35 | 85.8 | 94.35 | 97.55 |
|
86 |
+
| 14 | [crossencoder-MiniLM-L6-H384-uncased-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L6-H384-uncased-mmarcoFR) | 29.23 | 45.12 | 76.08 | 83.7 | 92.65 | 97.45 |
|
87 |
+
| 15 | [crossencoder-electra-base-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-discriminator-mmarcoFR) | 28.48 | 43.58 | 75.63 | 86.15 | 93.25 | 96.6 |
|
88 |
+
| 16 | [crossencoder-electra-small-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-small-discriminator-mmarcoFR) | 31.83 | 45.97 | 75.13 | 84.95 | 94.55 | 98.15 |
|
89 |
+
| 17 | [crossencoder-distilroberta-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilroberta-base-mmarcoFR) | 28.22 | 42.85 | 74.13 | 84.08 | 94.2 | 98.5 |
|
90 |
+
| 18 | [crossencoder-msmarco-TinyBERT-L-6-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-TinyBERT-L-6-mmarcoFR) | 28.23 | 42.7 | 73.63 | 85.65 | 92.65 | 98.35 |
|
91 |
+
| 19 | [crossencoder-msmarco-TinyBERT-L-4-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-TinyBERT-L-4-mmarcoFR) | 28.6 | 43.19 | 72.17 | 81.95 | 92.8 | 97.4 |
|
92 |
+
| 20 | [crossencoder-msmarco-MiniLM-L-2-v2-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-MiniLM-L-2-v2-mmarcoFR) | 30.82 | 44.3 | 72.03 | 82.65 | 93.35 | 98.1 |
|
93 |
+
| 21 | [crossencoder-distilbert-base-uncased-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilbert-base-uncased-mmarcoFR) | 25.47 | 40.11 | 71.37 | 85.6 | 93.85 | 97.95 |
|
94 |
+
| 22 | [crossencoder-msmarco-TinyBERT-L-2-v2-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-msmarco-TinyBERT-L-2-v2-mmarcoFR) | 31.08 | 43.88 | 71.3 | 81.43 | 92.6 | 98.1 |
|
95 |
+
|
96 |
+
## Training
|
97 |
+
***
|
98 |
+
|
99 |
+
#### Background
|
100 |
+
|
101 |
+
We used the [nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co/nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large) model and fine-tuned it with a binary cross-entropy loss function on 1M question-passage pairs in French with a positive-to-negative ratio of 4 (i.e., 25% of the pairs are relevant and 75% are irrelevant).
|
102 |
+
|
103 |
+
#### Hyperparameters
|
104 |
+
|
105 |
+
We trained the model on a single Tesla V100 GPU with 32GBs of memory during 10 epochs (i.e., 312.4k steps) using a batch size of 32. We used the adamw optimizer with an initial learning rate of 2e-05, weight decay of 0.01, learning rate warmup over the first 500 steps, and linear decay of the learning rate. The sequence length was limited to 512 tokens.
|
106 |
+
|
107 |
+
#### Data
|
108 |
+
|
109 |
+
We used the French version of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset to fine-tune our model. mMARCO is a multi-lingual machine-translated version of the MS MARCO dataset, a popular large-scale IR dataset.
|
110 |
+
|
111 |
+
## Citation
|
112 |
+
***
|
113 |
+
|
114 |
+
```bibtex
|
115 |
+
@online{louis2023,
|
116 |
+
author = 'Antoine Louis',
|
117 |
+
title = 'crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR: A Cross-Encoder Model Trained on 1M sentence pairs in French',
|
118 |
+
publisher = 'Hugging Face',
|
119 |
+
month = 'september',
|
120 |
+
year = '2023',
|
121 |
+
url = 'https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR',
|
122 |
+
}
|
123 |
+
```
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 384,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 1536,
|
18 |
+
"label2id": {
|
19 |
+
"LABEL_0": 0
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-05,
|
22 |
+
"max_position_embeddings": 514,
|
23 |
+
"model_type": "xlm-roberta",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 6,
|
26 |
+
"pad_token_id": 1,
|
27 |
+
"position_embedding_type": "absolute",
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.28.1",
|
30 |
+
"type_vocab_size": 1,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 250002
|
33 |
+
}
|
dev_scores.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
r-precision,mrr@10,recall@10,recall@20,recall@50,recall@100,model
|
2 |
+
33.92,49.33,79.00,88.35,94.80,98.20,crossencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:583323d2d680875692e528421c6c9fdfeff5b3f29a86be8eede01e98a5076349
|
3 |
+
size 428017397
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46afe88da5fd71bdbab5cfab5e84c1adce59c246ea5f9341bbecef061891d0a7
|
3 |
+
size 17082913
|
tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
18 |
+
"unk_token": "<unk>"
|
19 |
+
}
|