WealthFortress / wealthfortress.py
antitheft159's picture
Update wealthfortress.py
cb009b6 verified
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
num_consumers = 10
interest_size = 5
wealth_size = 1
feature_size = interest_size + wealth_size
consumer_profiles = torch.rand((num_consumers, feature_size))
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
# The forward function is now correctly defined as a method of the class
def forward(self, x):
return self.fc1(x)
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5 # Number of interests
wealth_size = 1 # Each consumer has one wealth data point
feature_size = interest_size + wealth_size # Total feature size
# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))
# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
def forward(self, x):
return self.fc1(x)
# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
def __init__(self, encryption_key):
super(VPNLayer, self).__init__()
self.encryption_key = encryption_key # Simulate encryption key
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (this is our 'authentication')
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)
# Try to access the encrypted data with the correct passcode
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
print("Access Granted. Decrypted Consumer Data:")
print(decrypted_profiles)
except ValueError as e:
print(e)
# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
print(e)
# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("Interest Similarity Matrix")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
# Define the number of consumers and feature size (interests + wealth)
num_consumers = 10
interest_size = 5 # Number of interests
wealth_size = 1 # Each consumer has one wealth data point
feature_size = interest_size + wealth_size # Total feature size
# Generate random consumer profiles (interest + wealth)
consumer_profiles = torch.rand((num_consumers, feature_size))
# Split into interests and wealth data
interests = consumer_profiles[:, :interest_size]
wealth_data = consumer_profiles[:, interest_size:]
# Define a neural network to transfer wealth between consumers
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(wealth_size, wealth_size)
def forward(self, x):
return self.fc1(x)
# Define a VPN-like layer for data encryption and passcode check
class VPNLayer(nn.Module):
def __init__(self, encryption_key):
super(VPNLayer, self).__init__()
self.encryption_key = encryption_key # Simulate encryption key
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (this is our 'authentication')
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
# Instantiate the VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
# Passcode required to access data (for simplicity, using the same as the encryption key)
passcode = torch.tensor(0.5)
# Try to access the encrypted data with the correct passcode
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
print("Access Granted. Decrypted Consumer Data:")
print(decrypted_profiles)
except ValueError as e:
print(e)
# Simulate incorrect passcode
wrong_passcode = torch.tensor(0.3)
try:
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
except ValueError as e:
print(e)
# Instantiate the wealth transfer network
net = WealthTransferNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Calculate cosine similarity between consumer interests
similarity_matrix = cosine_similarity(interests)
# Find pairs of consumers with similarity above a certain threshold
threshold = 0.8
similar_pairs = np.argwhere(similarity_matrix > threshold)
# We will only consider upper triangular values to avoid double matching or self-matching
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
# Simulate wealth transfer between matched pairs
for pair in similar_pairs:
consumer_a, consumer_b = pair
# Get wealth data for the pair
wealth_a = wealth_data[consumer_a]
wealth_b = wealth_data[consumer_b]
# Train the network to transfer wealth between matched consumers
for epoch in range(100):
optimizer.zero_grad()
transferred_wealth_a = net(wealth_a)
transferred_wealth_b = net(wealth_b)
# Simulate bidirectional transfer: A to B and B to A
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
total_loss = loss_a_to_b + loss_b_to_a
total_loss.backward()
optimizer.step()
# Display the similarity matrix and transfer results
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
# Plotting the interest similarity matrix for visualization
plt.figure(figsize=(8, 6))
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
plt.colorbar(label='Cosine Similarity')
plt.title("FortuneArch")
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import time
import numpy as np
# Define the number of mobile receivers
num_receivers = 5
# Define the size of the data packets
data_packet_size = 256
# Simulate high-speed data transmission by creating data packets
def generate_data_packet(size):
return torch.rand(size)
# Simulate a mobile receiver processing the data
class MobileReceiver(nn.Module):
def __init__(self):
super(MobileReceiver, self).__init__()
self.fc1 = nn.Linear(data_packet_size, data_packet_size)
def forward(self, data):
processed_data = torch.relu(self.fc1(data))
return processed_data
# Instantiate the mobile receivers
receivers = [MobileReceiver() for _ in range(num_receivers)]
# Define a function to simulate instantaneous transmission to all receivers
def transmit_data_to_receivers(data_packet, receivers):
received_data = []
# Start timing to simulate high-speed transmission
start_time = time.time()
# Transmit the data packet to each receiver
for receiver in receivers:
received_packet = receiver(data_packet)
received_data.append(received_packet)
# End timing
end_time = time.time()
transmission_time = end_time - start_time
print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds")
return received_data
# Generate a random data packet
data_packet = generate_data_packet(data_packet_size)
# Simulate data transmission to the receivers
received_data = transmit_data_to_receivers(data_packet, receivers)
# Display results
print(f"Original Data Packet (Sample):\n {data_packet[:5]}")
print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}")
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
t = torch.linspace(0, 2 * np.pi, size)
waveform = amplitude * torch.sin(frequency * t + phase)
return waveform
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0
# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform')
plt.title("Wealth Waveform Representation")
plt.xlabel("Time")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform
def generate_wealth_waveform(size, amplitude, frequency, phase):
t = torch.linspace(0, 2 * np.pi, size)
waveform = amplitude * torch.sin(frequency * t + phase)
return waveform
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
amplitude = 1000.0
frequency = 2.0
phase = 0.0
# Generate a wealth waveform
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Sample Number")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
self.data_storage[consumer_id] = encrypted_data
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
return self.decrypt_data(self.data_storage[consumer_id], passcode)
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
t = torch.linspace(0, 2 * np.pi, size)
waveform = random_amplitude * torch.sin(frequency * t + phase)
return waveform, random_amplitude
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0
# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Number")
plt.ylabel("Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import hashlib
# Define the Bank Account class
class BankAccount:
def __init__(self, account_number, balance=0.0):
self.account_number = account_number
self.balance = balance
def deposit(self, amount):
self.balance += amount
def get_balance(self):
return self.balance
# Define a VPN layer for data encryption and passcode check
class VPNLayer:
def __init__(self, encryption_key):
self.encryption_key = encryption_key # Simulate encryption key
self.data_storage = {}
self.hash_storage = {}
def encrypt_data(self, data):
# Simulate encryption by applying a non-linear transformation
encrypted_data = data * torch.sin(self.encryption_key)
return encrypted_data
def decrypt_data(self, encrypted_data, passcode):
# Check if passcode matches the encryption key (authentication)
if passcode == self.encryption_key:
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
return decrypted_data
else:
raise ValueError("Invalid Passcode! Access Denied.")
def store_data(self, data, consumer_id):
encrypted_data = self.encrypt_data(data)
# Store the encrypted data
self.data_storage[consumer_id] = encrypted_data
# Store a hash of the data for integrity check
data_hash = hashlib.sha256(data.numpy()).hexdigest()
self.hash_storage[consumer_id] = data_hash
def retrieve_data(self, consumer_id, passcode):
if consumer_id in self.data_storage:
encrypted_data = self.data_storage[consumer_id]
decrypted_data = self.decrypt_data(encrypted_data, passcode)
# Verify data integrity
original_hash = self.hash_storage[consumer_id]
current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest()
if original_hash == current_hash:
return decrypted_data
else:
raise ValueError("Data integrity compromised!")
else:
raise ValueError("Consumer ID not found!")
# Generate a wealth waveform with a random amplitude
def generate_wealth_waveform(size, frequency, phase):
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
t = torch.linspace(0, 2 * np.pi, size)
waveform = random_amplitude * torch.sin(frequency * t + phase)
return waveform, random_amplitude
# Define the WealthTransferNet neural network
class WealthTransferNet(nn.Module):
def __init__(self):
super(WealthTransferNet, self).__init__()
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
def forward(self, x):
return self.fc1(x)
# Function to simulate the wealth transfer process
def transfer_wealth(waveform, target_account):
# Ensure the waveform represents positive wealth for transfer
wealth_amount = torch.sum(waveform[waveform > 0]).item()
# Instantiate the wealth transfer network
net = WealthTransferNet()
# Create a tensor for the wealth amount
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Train the network (for demonstration, no real training here)
optimizer = optim.SGD(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Dummy target for training (for simulation purpose)
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
# Simulate the transfer process
for epoch in range(100): # Simulating a few training epochs
optimizer.zero_grad()
output = net(input_data)
loss = criterion(output, target_data)
loss.backward()
optimizer.step()
# Transfer the wealth to the target account
target_account.deposit(wealth_amount)
return wealth_amount
# Define the InfraredSignal class to simulate signal transmission
class InfraredSignal:
def __init__(self, waveform):
self.waveform = waveform
def transmit(self):
# Simulate transmission through space (in this case, just return the waveform)
print("Transmitting infrared signal...")
return self.waveform
# Define a receiver to detect infrared signals
class SignalReceiver:
def __init__(self):
self.received_data = None
def receive(self, signal):
print("Receiving signal...")
self.received_data = signal
print("Signal received.")
def decode(self):
# For simplicity, return the received data directly
return self.received_data
# Parameters for the wealth waveform
waveform_size = 1000
frequency = 2.0
phase = 0.0
# Generate a wealth waveform with random amplitude
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
# Create a target bank account
target_account = BankAccount(account_number="1234567890")
# Create a VPN layer
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
# Store consumer data (e.g., wealth waveform) in the VPN layer
consumer_id = "consumer_001"
vpn_layer.store_data(wealth_waveform, consumer_id)
# Attempt to retrieve data with the correct passcode
passcode = torch.tensor(0.5)
try:
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
# Create an infrared signal to transmit the wealth waveform
infrared_signal = InfraredSignal(retrieved_waveform)
# Transmit the signal
transmitted_signal = infrared_signal.transmit()
# Create a receiver and receive the signal
signal_receiver = SignalReceiver()
signal_receiver.receive(transmitted_signal)
# Decode the received signal
decoded_waveform = signal_receiver.decode()
# Transfer wealth represented by the decoded waveform
transferred_amount = transfer_wealth(decoded_waveform, target_account)
# Display the results
print(f"Transferred Amount: ${transferred_amount:.2f}")
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
# Plot the wealth waveform
plt.figure(figsize=(10, 5))
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
plt.title("Wealth Waveform Representation")
plt.xlabel("Sample Number")
plt.ylabel("Wealth Amount")
plt.legend()
plt.grid()
plt.show()
except ValueError as e:
print(e)