antitheft159 commited on
Commit
1359d1f
·
verified ·
1 Parent(s): 2e6f95a

Upload neurosphere.py

Browse files
Files changed (1) hide show
  1. neurosphere.py +74 -0
neurosphere.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """NeuroSphere
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1_Teobbyr6W_djbMw3CSWu2mGqk_bNk2T
8
+ """
9
+
10
+ import torch
11
+ import numpy as np
12
+ import matplotlib.pyplot as plt
13
+
14
+ # Parameters for the primary (wealth) signal
15
+ primary_frequency = 8 # Brain signal frequency in Hz (alpha wave for example)
16
+ primary_amplitude = 3 # Amplitude of the signal (wealth intensity)
17
+ phase_shift = np.pi / 6 # Phase shift for simulating wealth dynamics
18
+ time_steps = torch.linspace(0, 4 * np.pi, 1000) # Time steps for the waveform
19
+ density_factor = 4 # Density factor to simulate the magnetic wealth effect
20
+
21
+ # Parameters for the secondary (storage) signal
22
+ storage_frequency = 15 # Frequency for the storage signal
23
+ storage_amplitude = 1.5 # Amplitude for the storage signal
24
+ storage_phase_shift = np.pi / 3 # Phase shift for the storage dynamics
25
+ trigger_time = np.pi # Time when the signal reaches its "destination"
26
+
27
+ # Function to generate a sine wave
28
+ def generate_waveform(time, frequency, amplitude, phase_shift):
29
+ return amplitude * torch.sin(frequency * time + phase_shift)
30
+
31
+ # Function to encode wealth as a dense magnetic waveform
32
+ def encode_magnetic_wealth_waveform(signal, density_factor):
33
+ return signal * density_factor
34
+
35
+ # Generate the primary brain signal (dense magnetic wealth signal)
36
+ primary_signal = generate_waveform(time_steps, primary_frequency, primary_amplitude, phase_shift)
37
+
38
+ # Encode wealth data into the primary signal
39
+ magnetic_wealth_waveform = encode_magnetic_wealth_waveform(primary_signal, density_factor)
40
+
41
+ # Function to store data with the secondary frequency
42
+ def storage_waveform(time, trigger_time, storage_frequency, storage_amplitude, storage_phase_shift):
43
+ # Create a secondary waveform that is activated after a certain time (trigger_time)
44
+ storage_signal = torch.where(
45
+ time >= trigger_time, # Condition: time greater than trigger_time
46
+ generate_waveform(time, storage_frequency, storage_amplitude, storage_phase_shift),
47
+ torch.zeros_like(time) # Else, no signal before the trigger
48
+ )
49
+ return storage_signal
50
+
51
+ # Generate the secondary storage signal that activates after the primary signal reaches its destination
52
+ storage_signal = storage_waveform(time_steps, trigger_time, storage_frequency, storage_amplitude, storage_phase_shift)
53
+
54
+ # Combine the magnetic wealth waveform with the storage signal
55
+ combined_signal = magnetic_wealth_waveform + storage_signal
56
+
57
+ # Visualize the waveforms
58
+ plt.figure(figsize=(10, 6))
59
+
60
+ # Plot the primary dense magnetic wealth waveform
61
+ plt.plot(time_steps.numpy(), magnetic_wealth_waveform.numpy(), label="Magnetic Wealth Waveform", color="blue")
62
+
63
+ # Plot the secondary storage signal
64
+ plt.plot(time_steps.numpy(), storage_signal.numpy(), label="Storage Waveform (Activated)", color="green", linestyle="--")
65
+
66
+ # Plot the combined signal
67
+ plt.plot(time_steps.numpy(), combined_signal.numpy(), label="Combined Signal", color="red", alpha=0.7)
68
+
69
+ plt.title("Dense Magnetic Wealth Waveform with Data Storage Signal")
70
+ plt.xlabel("Time")
71
+ plt.ylabel("Signal Amplitude")
72
+ plt.legend()
73
+ plt.grid(True)
74
+ plt.show()