antitheft159
commited on
Commit
•
45306c3
1
Parent(s):
20b5ed7
Upload 2 files
Browse files- 1527_159_252_1434_144.ipynb +0 -0
- 1527_159_252_1434_144.py +202 -0
1527_159_252_1434_144.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
1527_159_252_1434_144.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""1527.159.252.1434.144
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1wIIHKVp7xmSZhl44znoh45yNm8bZPAYi
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
class DirectionManipulator:
|
16 |
+
def __init__(self, latent_dim, target_direction):
|
17 |
+
self.latent_dim = latent_dim
|
18 |
+
self.target_direction = target_direction / torch.norm(target_direction)
|
19 |
+
|
20 |
+
self.transform = nn.Parameter(torch.eye(latent_dim))
|
21 |
+
self.optimizer = optim.Adam([self.transform], lr=0.001)
|
22 |
+
|
23 |
+
def get_direction(self, vectors):
|
24 |
+
centered = vectors = vectors.mean(dim=0, keepdim=True)
|
25 |
+
|
26 |
+
U, S, V = torch.svd(centered)
|
27 |
+
|
28 |
+
return V[:, 0]
|
29 |
+
|
30 |
+
def transform_vectors(self, vectors):
|
31 |
+
return torch.matmul(vectors, self.transform)
|
32 |
+
|
33 |
+
def compute_loss(self, vectors):
|
34 |
+
transformed = self.transform_vectors(vectors)
|
35 |
+
current_directoin = self.get_direction(transformed)
|
36 |
+
|
37 |
+
alignment_loss = -torch.abs(torch.dot(current_direction, self.target_direction))
|
38 |
+
|
39 |
+
identity = torch.eye(self.latent_dim, device=vectors.device)
|
40 |
+
orthogonality_loss = torch.norm(torch.matmul(self.transform, self.transform.t()) - identity)
|
41 |
+
return alignment_loss + 0.1 * orthogonality_loss
|
42 |
+
|
43 |
+
def train_step(self, vectors):
|
44 |
+
self.optimizer.zero_grad()
|
45 |
+
loss = self.compute_loss(vectors)
|
46 |
+
loss.backward()
|
47 |
+
self.optimizer.step()
|
48 |
+
return loss.item()
|
49 |
+
|
50 |
+
def fit(self, vectors, n_epochs=100):
|
51 |
+
losses = []
|
52 |
+
for epoch in range(n_epochs):
|
53 |
+
loss = self.train_step(vectors)
|
54 |
+
losses.append(loss)
|
55 |
+
return losses
|
56 |
+
|
57 |
+
def main():
|
58 |
+
latent_dim = 8
|
59 |
+
n_samples = 100
|
60 |
+
|
61 |
+
vectors = torch.randn(n_samples, latent_dim)
|
62 |
+
target_direction = torch.randn(latent_dim)
|
63 |
+
|
64 |
+
manipulator = DirectionManipulator(latent_dim, target_direction)
|
65 |
+
losses = manipulator.fit(vectors)
|
66 |
+
|
67 |
+
new_vectors = torch.randn(10, latent_dim)
|
68 |
+
transformed = manipulator.transform_vectors(new_vectors)
|
69 |
+
|
70 |
+
return transformed
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
74 |
+
|
75 |
+
import torch
|
76 |
+
import torch.nn as nn
|
77 |
+
import torch.optim as optim
|
78 |
+
import numpy as np
|
79 |
+
import matplotlib.pyplot as plt
|
80 |
+
from mpl_toolkits.mplot3d import Axes3D
|
81 |
+
|
82 |
+
class DirectionManipulator:
|
83 |
+
def __init__(self, latent_dim, target_direction):
|
84 |
+
self.latent_dim = latent_dim
|
85 |
+
self.target_direction = target_direction / torch.norm(target_direction)
|
86 |
+
self.transform = nn.Parameter(torch.eye(latent_dim))
|
87 |
+
self.optimizer = optim.Adam([self.transform], lr=0.001)
|
88 |
+
|
89 |
+
def get_direction(self, vectors):
|
90 |
+
centered = vectors - vectors.mean(dim=0, keepdim=True)
|
91 |
+
U, S, V = torch.svd(centered)
|
92 |
+
return V[:, 0]
|
93 |
+
|
94 |
+
def transform_vectors(self, vectors):
|
95 |
+
return torch.matmul(vectors, self.transform)
|
96 |
+
|
97 |
+
def compute_loss(self, vectors):
|
98 |
+
transformed = self.transform_vectors(vectors)
|
99 |
+
current_direction = self.get_direction(transformed)
|
100 |
+
alignment_loss = -torch.abs(torch.dot(current_direction, self.target_direction))
|
101 |
+
|
102 |
+
identity = torch.eye(self.latent_dim, device=vectors.device)
|
103 |
+
orthogonality_loss = torch.norm(torch.matmul(self.transform, self.transform.t()) - identity)
|
104 |
+
return alignment_loss + 0.1 * orthogonality_loss
|
105 |
+
|
106 |
+
def train_step(self, vectors):
|
107 |
+
self.optimizer.zero_grad()
|
108 |
+
loss =self.compute_loss(vectors)
|
109 |
+
loss.backward()
|
110 |
+
self.optimizer.step()
|
111 |
+
return loss.item()
|
112 |
+
|
113 |
+
def fit(self, vectors, n_epochs=100):
|
114 |
+
losses = []
|
115 |
+
for epoch in range(n_epochs):
|
116 |
+
loss = self.train_step(vectors)
|
117 |
+
losses.append(loss)
|
118 |
+
return losses
|
119 |
+
|
120 |
+
def visualize_transformation(original_vectors, transformed_vectors, original_direction, target_direction, title):
|
121 |
+
fig = plt.figure(figsize=(15, 5))
|
122 |
+
|
123 |
+
ax1 = fig.add_subplot(121, projection='3d')
|
124 |
+
ax1.scatter(original_vectors[:, 0],
|
125 |
+
original_vectors[:, 1],
|
126 |
+
original_vectors[:, 2],
|
127 |
+
c='blue', alpha=0.6, label='Original points')
|
128 |
+
|
129 |
+
ax1.quiver(0, 0, 0,
|
130 |
+
original_direction[0].item(),
|
131 |
+
original_direction[1].item(),
|
132 |
+
original_direction[2].item(),
|
133 |
+
color='red', linewidth=3, label='Original direction'
|
134 |
+
)
|
135 |
+
|
136 |
+
ax1.set_title('Original Data')
|
137 |
+
ax1.set_xlabel('X')
|
138 |
+
ax1.set_ylabel('Y')
|
139 |
+
ax1.set_zlabel('Z')
|
140 |
+
ax1.legend()
|
141 |
+
|
142 |
+
ax2 = fig.add_subplot(122, projection='3d')
|
143 |
+
ax2.scatter(transformed_vectors[:, 0],
|
144 |
+
transformed_vectors[:, 1],
|
145 |
+
transformed_vectors[:, 2],
|
146 |
+
c='green', alpha=0.6, label='Transformed points')
|
147 |
+
|
148 |
+
ax2.quiver(0, 0, 0,
|
149 |
+
target_direction[0].item(),
|
150 |
+
target_direction[1].item(),
|
151 |
+
target_direction[2].item(),
|
152 |
+
color='red', linewidth=3, label='Target direction')
|
153 |
+
|
154 |
+
ax2.set_title('Transformed Data')
|
155 |
+
ax2.set_xlabel('X')
|
156 |
+
ax2.set_ylabel('Y')
|
157 |
+
ax2.set_zlabel('Z')
|
158 |
+
ax2.legend()
|
159 |
+
|
160 |
+
plt.suptitle(title)
|
161 |
+
plt.tight_layout()
|
162 |
+
return fig
|
163 |
+
|
164 |
+
def main():
|
165 |
+
torch.manual_seed(42)
|
166 |
+
latent_dim = 3
|
167 |
+
n_samples =100
|
168 |
+
|
169 |
+
direction = torch.tensor([1.0, 0.2, 0.1])
|
170 |
+
noise = torch.randn(n_samples, latent_dim) * 0.3
|
171 |
+
vectors = direction.repeat(n_samples, 1) + noise
|
172 |
+
|
173 |
+
target_direction = torch.tensor([0.2, 1.0, 0.1])
|
174 |
+
|
175 |
+
manipulator = DirectionManipulator(latent_dim, target_direction)
|
176 |
+
losses = manipulator.fit(vectors, n_epochs=200)
|
177 |
+
|
178 |
+
transformed_vectors = manipulator.transform_vectors(vectors)
|
179 |
+
|
180 |
+
original_direction = manipulator.get_direction(vectors)
|
181 |
+
|
182 |
+
fig = visualize_transformation(
|
183 |
+
vectors.detach().numpy(),
|
184 |
+
transformed_vectors.detach().numpy(),
|
185 |
+
original_direction.detach(),
|
186 |
+
target_direction,
|
187 |
+
title="Direction Manipulation Visualization"
|
188 |
+
)
|
189 |
+
|
190 |
+
plt.figure(figsize=(10, 4))
|
191 |
+
plt.plot(losses)
|
192 |
+
plt.title('Training Loss')
|
193 |
+
plt.xlabel('Epoch')
|
194 |
+
plt.ylabel('Loss')
|
195 |
+
plt.grid(True)
|
196 |
+
plt.show()
|
197 |
+
|
198 |
+
return vectors, transformed_vectors, losses
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
202 |
+
|