Philip Fradkin commited on
Commit
1da0529
1 Parent(s): be652b1

feat: dashed lines

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -132,29 +132,29 @@ chmod +x starter_build.sh
132
  We can now generate six track encodings for any transcript!
133
  ```
134
  # import Genome, Interval, instantiate Genome
135
- > genome = Genome("gencode.v29")
136
- > interval = Interval("chr7", "+", 117120016, 117120201, genome)
137
- > genome.dna(interval)
138
  # CTCTTATGCTCGGGTGATCC
139
 
140
  # Load Orthrus 6 track
141
- > run_name="orthrus_large_6_track"
142
- > checkpoint="epoch=22-step=20000.ckpt"
143
- > model_repository="./models"
144
- > model = load_model(f"{model_repository}{run_name}", checkpoint_name=checkpoint)
145
- > model = model.to(torch.device('cuda'))
146
- > print(model)
147
  # Generate embedding
148
- > transcripts = find_transcript_by_gene_name(genome, 'BCL2L1')
149
- > print(transcripts)
150
- > t = transcripts[0]
151
- > sixt = create_six_track_encoding(t)
152
- > sixt = torch.tensor(sixt, dtype=torch.float32)
153
- > sixt = sixt.unsqueeze(0)
154
- > sixt = sixt.to(device='cuda')
155
- > lengths = torch.tensor([sixt.shape[2]]).to(device='cuda')
156
- > embedding = model.representation(sixt, lengths)
157
- > print(embedding.shape)
158
  # torch.Size([1, 512])
159
  ```
160
 
 
132
  We can now generate six track encodings for any transcript!
133
  ```
134
  # import Genome, Interval, instantiate Genome
135
+ >>> genome = Genome("gencode.v29")
136
+ >>> interval = Interval("chr7", "+", 117120016, 117120201, genome)
137
+ >>> genome.dna(interval)
138
  # CTCTTATGCTCGGGTGATCC
139
 
140
  # Load Orthrus 6 track
141
+ >>> run_name="orthrus_large_6_track"
142
+ >>> checkpoint="epoch=22-step=20000.ckpt"
143
+ >>> model_repository="./models"
144
+ >>> model = load_model(f"{model_repository}{run_name}", checkpoint_name=checkpoint)
145
+ >>> model = model.to(torch.device('cuda'))
146
+ >>> print(model)
147
  # Generate embedding
148
+ >>> transcripts = find_transcript_by_gene_name(genome, 'BCL2L1')
149
+ >>> print(transcripts)
150
+ >>> t = transcripts[0]
151
+ >>> sixt = create_six_track_encoding(t)
152
+ >>> sixt = torch.tensor(sixt, dtype=torch.float32)
153
+ >>> sixt = sixt.unsqueeze(0)
154
+ >>> sixt = sixt.to(device='cuda')
155
+ >>> lengths = torch.tensor([sixt.shape[2]]).to(device='cuda')
156
+ >>> embedding = model.representation(sixt, lengths)
157
+ >>> print(embedding.shape)
158
  # torch.Size([1, 512])
159
  ```
160