orthrus / src /model.py
Philip Fradkin
feat: update 4track model
bc2395e
raw
history blame
6.47 kB
import math
from functools import partial
import os
import json
import torch
import torch.nn as nn
import numpy as np
from mamba_ssm.modules.mamba_simple import Mamba, Block
from huggingface_hub import PyTorchModelHubMixin
# convert to one hot
def seq_to_oh(seq):
oh = np.zeros((len(seq), 4), dtype=int)
for i, base in enumerate(seq):
if base == 'A':
oh[i, 0] = 1
elif base == 'C':
oh[i, 1] = 1
elif base == 'G':
oh[i, 2] = 1
elif base == 'T':
oh[i, 3] = 1
return oh
def create_block(
d_model,
ssm_cfg=None,
norm_epsilon=1e-5,
residual_in_fp32=False,
fused_add_norm=False,
layer_idx=None,
device=None,
dtype=None,
):
if ssm_cfg is None:
ssm_cfg = {}
factory_kwargs = {"device": device, "dtype": dtype}
mix_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
norm_cls = partial(nn.LayerNorm, eps=norm_epsilon, **factory_kwargs)
block = Block(
d_model,
mix_cls,
norm_cls=norm_cls,
fused_add_norm=fused_add_norm,
residual_in_fp32=residual_in_fp32,
)
block.layer_idx = layer_idx
return block
class MixerModel(
nn.Module,
PyTorchModelHubMixin,
):
def __init__(
self,
d_model: int,
n_layer: int,
input_dim: int,
ssm_cfg=None,
norm_epsilon: float = 1e-5,
rms_norm: bool = False,
initializer_cfg=None,
fused_add_norm=False,
residual_in_fp32=False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.embedding = nn.Linear(input_dim, d_model, **factory_kwargs)
self.layers = nn.ModuleList(
[
create_block(
d_model,
ssm_cfg=ssm_cfg,
norm_epsilon=norm_epsilon,
residual_in_fp32=residual_in_fp32,
fused_add_norm=fused_add_norm,
layer_idx=i,
**factory_kwargs,
)
for i in range(n_layer)
]
)
self.norm_f = nn.LayerNorm(d_model, eps=norm_epsilon, **factory_kwargs)
self.apply(
partial(
_init_weights,
n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
def forward(self, x, inference_params=None, channel_last=False):
if not channel_last:
x = x.transpose(1, 2)
hidden_states = self.embedding(x)
residual = None
for layer in self.layers:
hidden_states, residual = layer(
hidden_states, residual, inference_params=inference_params
)
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
hidden_states = hidden_states
return hidden_states
def representation(
self,
x: torch.Tensor,
lengths: torch.Tensor,
channel_last: bool = False,
) -> torch.Tensor:
"""Get global representation of input data.
Args:
x: Data to embed. Has shape (B x C x L) if not channel_last.
lengths: Unpadded length of each data input.
channel_last: Expects input of shape (B x L x C).
Returns:
Global representation vector of shape (B x H).
"""
out = self.forward(x, channel_last=channel_last)
mean_tensor = mean_unpadded(out, lengths)
return mean_tensor
def mean_unpadded(x: torch.Tensor, lengths: torch.Tensor) -> torch.Tensor:
"""Take mean of tensor across second dimension without padding.
Args:
x: Tensor to take unpadded mean. Has shape (B x L x H).
lengths: Tensor of unpadded lengths. Has shape (B)
Returns:
Mean tensor of shape (B x H).
"""
mask = torch.arange(x.size(1), device=x.device)[None, :] < lengths[:, None]
masked_tensor = x * mask.unsqueeze(-1)
sum_tensor = masked_tensor.sum(dim=1)
mean_tensor = sum_tensor / lengths.unsqueeze(-1).float()
return mean_tensor
def _init_weights(
module,
n_layer,
initializer_range=0.02, # Now only used for embedding layer.
rescale_prenorm_residual=True,
n_residuals_per_layer=1, # Change to 2 if we have MLP
):
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(n_residuals_per_layer * n_layer)
def load_model(run_path: str, checkpoint_name: str) -> nn.Module:
"""Load trained model located at specified path.
Args:
run_path: Path where run data is located.
checkpoint_name: Name of model checkpoint to load.
Returns:
Model with loaded weights.
"""
model_config_path = os.path.join(run_path, "model_config.json")
data_config_path = os.path.join(run_path, "data_config.json")
with open(model_config_path, "r") as f:
model_params = json.load(f)
# TODO: Temp backwards compatibility
if "n_tracks" not in model_params:
with open(data_config_path, "r") as f:
data_params = json.load(f)
n_tracks = data_params["n_tracks"]
else:
n_tracks = model_params["n_tracks"]
model_path = os.path.join(run_path, checkpoint_name)
model = MixerModel(
d_model=model_params["ssm_model_dim"],
n_layer=model_params["ssm_n_layers"],
input_dim=n_tracks
)
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
state_dict = {}
for k, v in checkpoint["state_dict"].items():
if k.startswith("model"):
state_dict[k.lstrip("model")[1:]] = v
model.load_state_dict(state_dict)
return model