anthonyx commited on
Commit
3cdb322
1 Parent(s): d96b45a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.86 +/- 0.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd06028a4c432aef5c3ee2f8e33ad78fe82fc6dda99f39cf6e7ceb8f81ded3e3
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eff00c5f040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7eff00c5e280>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680029660656979189,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO2ORPuAkiju+pQo/O2ORPuAkiju+pQo/O2ORPuAkiju+pQo/O2ORPuAkiju+pQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJsMLvxOtwL9drJi/0r+2P3Ly3D8rpne/wLgiP4B6hj8dU5A/GVyyv4UG078bCdw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/DqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]]",
60
+ "desired_goal": "[[-0.5459465 -1.5052818 -1.1927601 ]\n [ 1.4277289 1.7261488 -0.9673793 ]\n [ 0.63563156 1.0506134 1.1275364 ]\n [-1.3934356 -1.6486365 0.42975697]]",
61
+ "observation": "[[ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmrNau+Ya0z2BskM+y++XvYa0yT0CnaE9aBkNPvJXATsjo4w+Vz+tPZ3+l72mH4k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00333712 0.10307865 0.19111063]\n [-0.07418784 0.09848885 0.07891275]\n [ 0.13779223 0.00197363 0.27468213]\n [ 0.08459347 -0.07421611 0.26781958]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuD6sN2rVEMCUhpRSlIwBbJRLMowBdJRHQKlPqz8gpz91fZQoaAZoCWgPQwid8X1xqYoGwJSGlFKUaBVLMmgWR0CpT1NrCWNWdX2UKGgGaAloD0MIIy9rYoGvCcCUhpRSlGgVSzJoFkdAqU76u6mO2nV9lChoBmgJaA9DCO0ozlFHh/+/lIaUUpRoFUsyaBZHQKlOpHyVfNR1fZQoaAZoCWgPQwgiNe1immn/v5SGlFKUaBVLMmgWR0CpULmjsUqQdX2UKGgGaAloD0MIaF2j5UBPAcCUhpRSlGgVSzJoFkdAqVBhxaPjn3V9lChoBmgJaA9DCNxGA3gLRAnAlIaUUpRoFUsyaBZHQKlQCQPI4l11fZQoaAZoCWgPQwiVC5V/Le8EwJSGlFKUaBVLMmgWR0CpT7KwY+B6dX2UKGgGaAloD0MILV+X4T/d7L+UhpRSlGgVSzJoFkdAqVHH07KaHHV9lChoBmgJaA9DCIxNK4VAbgfAlIaUUpRoFUsyaBZHQKlRb92HLzR1fZQoaAZoCWgPQwhMwoU8grsFwJSGlFKUaBVLMmgWR0CpURdUjs2OdX2UKGgGaAloD0MIj1N0JJf/8L+UhpRSlGgVSzJoFkdAqVDBE+gUUXV9lChoBmgJaA9DCPhUTntKLgPAlIaUUpRoFUsyaBZHQKlTrwiJO351fZQoaAZoCWgPQwiWI2Qgz64AwJSGlFKUaBVLMmgWR0CpU1gpKBd2dX2UKGgGaAloD0MIPzkKEAWzDcCUhpRSlGgVSzJoFkdAqVMAiaAnUnV9lChoBmgJaA9DCG5t4XmpmALAlIaUUpRoFUsyaBZHQKlSqzollbx1fZQoaAZoCWgPQwjoTxvV6aAFwJSGlFKUaBVLMmgWR0CpVXHZsbeedX2UKGgGaAloD0MIJSNnYU87AcCUhpRSlGgVSzJoFkdAqVUa86FM7HV9lChoBmgJaA9DCBqIZTOH5AbAlIaUUpRoFUsyaBZHQKlUwv+OwPl1fZQoaAZoCWgPQwhFRgckYb8AwJSGlFKUaBVLMmgWR0CpVG2MKkVOdX2UKGgGaAloD0MIAhHiytmbCMCUhpRSlGgVSzJoFkdAqVc4iRnvlXV9lChoBmgJaA9DCEFIFjCB2wTAlIaUUpRoFUsyaBZHQKlW4dYnv2J1fZQoaAZoCWgPQwhoXaPlQG8IwJSGlFKUaBVLMmgWR0CpVooXTEzgdX2UKGgGaAloD0MIxTpVvmeECcCUhpRSlGgVSzJoFkdAqVY0pG4I8nV9lChoBmgJaA9DCI7r3/WZswTAlIaUUpRoFUsyaBZHQKlZGcy31Bd1fZQoaAZoCWgPQwiVfVcE/9v9v5SGlFKUaBVLMmgWR0CpWMLyMDOkdX2UKGgGaAloD0MI3soSnWUW+b+UhpRSlGgVSzJoFkdAqVhrMFEApHV9lChoBmgJaA9DCLaBO1CnHAHAlIaUUpRoFUsyaBZHQKlYFd8iOed1fZQoaAZoCWgPQwh9Wdqpudz+v5SGlFKUaBVLMmgWR0CpWvcQ7LdOdX2UKGgGaAloD0MI5KHvbmXpBsCUhpRSlGgVSzJoFkdAqVqgQ+UyHnV9lChoBmgJaA9DCGmn5nKDwQDAlIaUUpRoFUsyaBZHQKlaSMqBmPJ1fZQoaAZoCWgPQwj9T/7uHXX1v5SGlFKUaBVLMmgWR0CpWfOOCGvfdX2UKGgGaAloD0MI88zLYfdd/7+UhpRSlGgVSzJoFkdAqVyiSq2jPHV9lChoBmgJaA9DCOVjd4GSQgjAlIaUUpRoFUsyaBZHQKlcSiZfD1p1fZQoaAZoCWgPQwhvvaYHBYULwJSGlFKUaBVLMmgWR0CpW/FaSs8xdX2UKGgGaAloD0MIs9E5P8Xx+7+UhpRSlGgVSzJoFkdAqVubCgsbvXV9lChoBmgJaA9DCNf7jXbcEAvAlIaUUpRoFUsyaBZHQKldqCPp6hR1fZQoaAZoCWgPQwgmbarukY32v5SGlFKUaBVLMmgWR0CpXVBZQpF1dX2UKGgGaAloD0MIlQ9B1eh1CsCUhpRSlGgVSzJoFkdAqVz3qVyFPHV9lChoBmgJaA9DCFTGv8+48P+/lIaUUpRoFUsyaBZHQKlcoYFaB7N1fZQoaAZoCWgPQwjMttPWiEABwJSGlFKUaBVLMmgWR0CpXrZNwiqydX2UKGgGaAloD0MIHv0v16IF9b+UhpRSlGgVSzJoFkdAqV5edf9gnnV9lChoBmgJaA9DCBx6i4f3/AbAlIaUUpRoFUsyaBZHQKleBbcoH9p1fZQoaAZoCWgPQwhQUIpW7uUIwJSGlFKUaBVLMmgWR0CpXa8cU/OddX2UKGgGaAloD0MITG9/LhoSBMCUhpRSlGgVSzJoFkdAqV+1/MGHHnV9lChoBmgJaA9DCIcXRKSmXQPAlIaUUpRoFUsyaBZHQKlfXgG8mKJ1fZQoaAZoCWgPQwhfmEwVjIoKwJSGlFKUaBVLMmgWR0CpXwU3fhuPdX2UKGgGaAloD0MIDW5rC89rBcCUhpRSlGgVSzJoFkdAqV6vA44p+nV9lChoBmgJaA9DCN6wbVFmg/S/lIaUUpRoFUsyaBZHQKlg3Bk7Oml1fZQoaAZoCWgPQwhOfLWjODcRwJSGlFKUaBVLMmgWR0CpYITtTkyUdX2UKGgGaAloD0MIcR+5Nel2BMCUhpRSlGgVSzJoFkdAqWAsGorFwXV9lChoBmgJaA9DCOc3TDRIwQvAlIaUUpRoFUsyaBZHQKlf1dTo+wF1fZQoaAZoCWgPQwihaYmV0egAwJSGlFKUaBVLMmgWR0CpYezHjp9rdX2UKGgGaAloD0MII74Ts17MCsCUhpRSlGgVSzJoFkdAqWGVE7W/anV9lChoBmgJaA9DCIhkyLH1zPu/lIaUUpRoFUsyaBZHQKlhPFn7Hhl1fZQoaAZoCWgPQwgvNq0UAnkNwJSGlFKUaBVLMmgWR0CpYOYFA3UAdX2UKGgGaAloD0MITtGRXP6TEcCUhpRSlGgVSzJoFkdAqWMXjABT43V9lChoBmgJaA9DCDI7i96poArAlIaUUpRoFUsyaBZHQKliv3qRlpZ1fZQoaAZoCWgPQwgQzNHj91YKwJSGlFKUaBVLMmgWR0CpYmbSZ0CBdX2UKGgGaAloD0MIzjgNUYUfA8CUhpRSlGgVSzJoFkdAqWIQekpI+XV9lChoBmgJaA9DCG+BBMWPMei/lIaUUpRoFUsyaBZHQKlkLyI55qx1fZQoaAZoCWgPQwhAijpzD4kCwJSGlFKUaBVLMmgWR0CpY9dKVY6odX2UKGgGaAloD0MI+U7MejE0AMCUhpRSlGgVSzJoFkdAqWN+l9BrvnV9lChoBmgJaA9DCBlUG5yIvvC/lIaUUpRoFUsyaBZHQKljKE9Mbm51fZQoaAZoCWgPQwjj/46oUJ0LwJSGlFKUaBVLMmgWR0CpZVZK3/gjdX2UKGgGaAloD0MINC4cCMnCCsCUhpRSlGgVSzJoFkdAqWT+gg5imXV9lChoBmgJaA9DCJcbDHVYYQfAlIaUUpRoFUsyaBZHQKlkpatcOb11fZQoaAZoCWgPQwgofLYODpYKwJSGlFKUaBVLMmgWR0CpZE+HrQgLdX2UKGgGaAloD0MIBYcXRKSGCcCUhpRSlGgVSzJoFkdAqWZqYNRWLnV9lChoBmgJaA9DCGHEPgEUo/W/lIaUUpRoFUsyaBZHQKlmEois4kx1fZQoaAZoCWgPQwiHGRpPBPEFwJSGlFKUaBVLMmgWR0CpZbnSnccmdX2UKGgGaAloD0MIXkiHhzAeBMCUhpRSlGgVSzJoFkdAqWVjrNW2gHV9lChoBmgJaA9DCJf+JalMcfu/lIaUUpRoFUsyaBZHQKlneFoL5RF1fZQoaAZoCWgPQwjF5A0w850DwJSGlFKUaBVLMmgWR0CpZyA4n4O+dX2UKGgGaAloD0MIkUYFTrZB87+UhpRSlGgVSzJoFkdAqWbHgzguRXV9lChoBmgJaA9DCLwjY7X5nwHAlIaUUpRoFUsyaBZHQKlmcSpzcRF1fZQoaAZoCWgPQwjnqKPjamT/v5SGlFKUaBVLMmgWR0CpaI9k8RthdX2UKGgGaAloD0MI8rBQa5oXAMCUhpRSlGgVSzJoFkdAqWg3ikwevXV9lChoBmgJaA9DCOhpwCDpE/S/lIaUUpRoFUsyaBZHQKln3t2s7uF1fZQoaAZoCWgPQwhYcaq1MAvtv5SGlFKUaBVLMmgWR0CpZ4iKR+z/dX2UKGgGaAloD0MIaqFkcmoHEMCUhpRSlGgVSzJoFkdAqWmlFa0Qb3V9lChoBmgJaA9DCJTai2g75gfAlIaUUpRoFUsyaBZHQKlpTVkMCtB1fZQoaAZoCWgPQwjT9xqC49IGwJSGlFKUaBVLMmgWR0CpaPTCcf/4dX2UKGgGaAloD0MI0hxZ+WWw+b+UhpRSlGgVSzJoFkdAqWieh7E5yXV9lChoBmgJaA9DCK7xmeyfJ/O/lIaUUpRoFUsyaBZHQKlq0ZaV2Rt1fZQoaAZoCWgPQwiSeeQPBh4FwJSGlFKUaBVLMmgWR0CpanmhVU++dX2UKGgGaAloD0MIOngmNElMCMCUhpRSlGgVSzJoFkdAqWog9Net0XV9lChoBmgJaA9DCJxOstXlFAHAlIaUUpRoFUsyaBZHQKlpysZpBX11fZQoaAZoCWgPQwgAcsKE0SwBwJSGlFKUaBVLMmgWR0CpbAvA44p+dX2UKGgGaAloD0MI/0EkQ46t97+UhpRSlGgVSzJoFkdAqWuz/EOy3XV9lChoBmgJaA9DCKck63B0Ffu/lIaUUpRoFUsyaBZHQKlrW3fAKv51fZQoaAZoCWgPQwgwndZtUHv1v5SGlFKUaBVLMmgWR0CpawUtI066dX2UKGgGaAloD0MI81SH3Aw36L+UhpRSlGgVSzJoFkdAqW1KT4cm0HV9lChoBmgJaA9DCAwCK4cWWQHAlIaUUpRoFUsyaBZHQKls8lb/wRZ1fZQoaAZoCWgPQwim8QuvJPngv5SGlFKUaBVLMmgWR0CpbJmnwXqJdX2UKGgGaAloD0MIRmEXRQ98EcCUhpRSlGgVSzJoFkdAqWxEFpwjuHV9lChoBmgJaA9DCG743XTLDue/lIaUUpRoFUsyaBZHQKlubmuDBdl1fZQoaAZoCWgPQwijyjDuBnEKwJSGlFKUaBVLMmgWR0CpbhcYht+DdX2UKGgGaAloD0MIIHwo0ZKH+7+UhpRSlGgVSzJoFkdAqW2+aUiY9nV9lChoBmgJaA9DCJVgcTjza/q/lIaUUpRoFUsyaBZHQKltaCeVcD91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f6f1a83497f05f286e1a4586e730770240d820a6a230eff20e3283b5e16e38
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e11bb72cd77b980922fba7718eba5ce9682d1dd8ef4432a3afd2535211ec857
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eff00c5f040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eff00c5e280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680029660656979189, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO2ORPuAkiju+pQo/O2ORPuAkiju+pQo/O2ORPuAkiju+pQo/O2ORPuAkiju+pQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJsMLvxOtwL9drJi/0r+2P3Ly3D8rpne/wLgiP4B6hj8dU5A/GVyyv4UG078bCdw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/Do7Y5E+4CSKO76lCj/47J07miV1umt4/DqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]\n [0.2839602 0.00421582 0.5415915 ]]", "desired_goal": "[[-0.5459465 -1.5052818 -1.1927601 ]\n [ 1.4277289 1.7261488 -0.9673793 ]\n [ 0.63563156 1.0506134 1.1275364 ]\n [-1.3934356 -1.6486365 0.42975697]]", "observation": "[[ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]\n [ 0.2839602 0.00421582 0.5415915 0.00481951 -0.00093516 0.0019262 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmrNau+Ya0z2BskM+y++XvYa0yT0CnaE9aBkNPvJXATsjo4w+Vz+tPZ3+l72mH4k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00333712 0.10307865 0.19111063]\n [-0.07418784 0.09848885 0.07891275]\n [ 0.13779223 0.00197363 0.27468213]\n [ 0.08459347 -0.07421611 0.26781958]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuD6sN2rVEMCUhpRSlIwBbJRLMowBdJRHQKlPqz8gpz91fZQoaAZoCWgPQwid8X1xqYoGwJSGlFKUaBVLMmgWR0CpT1NrCWNWdX2UKGgGaAloD0MIIy9rYoGvCcCUhpRSlGgVSzJoFkdAqU76u6mO2nV9lChoBmgJaA9DCO0ozlFHh/+/lIaUUpRoFUsyaBZHQKlOpHyVfNR1fZQoaAZoCWgPQwgiNe1immn/v5SGlFKUaBVLMmgWR0CpULmjsUqQdX2UKGgGaAloD0MIaF2j5UBPAcCUhpRSlGgVSzJoFkdAqVBhxaPjn3V9lChoBmgJaA9DCNxGA3gLRAnAlIaUUpRoFUsyaBZHQKlQCQPI4l11fZQoaAZoCWgPQwiVC5V/Le8EwJSGlFKUaBVLMmgWR0CpT7KwY+B6dX2UKGgGaAloD0MILV+X4T/d7L+UhpRSlGgVSzJoFkdAqVHH07KaHHV9lChoBmgJaA9DCIxNK4VAbgfAlIaUUpRoFUsyaBZHQKlRb92HLzR1fZQoaAZoCWgPQwhMwoU8grsFwJSGlFKUaBVLMmgWR0CpURdUjs2OdX2UKGgGaAloD0MIj1N0JJf/8L+UhpRSlGgVSzJoFkdAqVDBE+gUUXV9lChoBmgJaA9DCPhUTntKLgPAlIaUUpRoFUsyaBZHQKlTrwiJO351fZQoaAZoCWgPQwiWI2Qgz64AwJSGlFKUaBVLMmgWR0CpU1gpKBd2dX2UKGgGaAloD0MIPzkKEAWzDcCUhpRSlGgVSzJoFkdAqVMAiaAnUnV9lChoBmgJaA9DCG5t4XmpmALAlIaUUpRoFUsyaBZHQKlSqzollbx1fZQoaAZoCWgPQwjoTxvV6aAFwJSGlFKUaBVLMmgWR0CpVXHZsbeedX2UKGgGaAloD0MIJSNnYU87AcCUhpRSlGgVSzJoFkdAqVUa86FM7HV9lChoBmgJaA9DCBqIZTOH5AbAlIaUUpRoFUsyaBZHQKlUwv+OwPl1fZQoaAZoCWgPQwhFRgckYb8AwJSGlFKUaBVLMmgWR0CpVG2MKkVOdX2UKGgGaAloD0MIAhHiytmbCMCUhpRSlGgVSzJoFkdAqVc4iRnvlXV9lChoBmgJaA9DCEFIFjCB2wTAlIaUUpRoFUsyaBZHQKlW4dYnv2J1fZQoaAZoCWgPQwhoXaPlQG8IwJSGlFKUaBVLMmgWR0CpVooXTEzgdX2UKGgGaAloD0MIxTpVvmeECcCUhpRSlGgVSzJoFkdAqVY0pG4I8nV9lChoBmgJaA9DCI7r3/WZswTAlIaUUpRoFUsyaBZHQKlZGcy31Bd1fZQoaAZoCWgPQwiVfVcE/9v9v5SGlFKUaBVLMmgWR0CpWMLyMDOkdX2UKGgGaAloD0MI3soSnWUW+b+UhpRSlGgVSzJoFkdAqVhrMFEApHV9lChoBmgJaA9DCLaBO1CnHAHAlIaUUpRoFUsyaBZHQKlYFd8iOed1fZQoaAZoCWgPQwh9Wdqpudz+v5SGlFKUaBVLMmgWR0CpWvcQ7LdOdX2UKGgGaAloD0MI5KHvbmXpBsCUhpRSlGgVSzJoFkdAqVqgQ+UyHnV9lChoBmgJaA9DCGmn5nKDwQDAlIaUUpRoFUsyaBZHQKlaSMqBmPJ1fZQoaAZoCWgPQwj9T/7uHXX1v5SGlFKUaBVLMmgWR0CpWfOOCGvfdX2UKGgGaAloD0MI88zLYfdd/7+UhpRSlGgVSzJoFkdAqVyiSq2jPHV9lChoBmgJaA9DCOVjd4GSQgjAlIaUUpRoFUsyaBZHQKlcSiZfD1p1fZQoaAZoCWgPQwhvvaYHBYULwJSGlFKUaBVLMmgWR0CpW/FaSs8xdX2UKGgGaAloD0MIs9E5P8Xx+7+UhpRSlGgVSzJoFkdAqVubCgsbvXV9lChoBmgJaA9DCNf7jXbcEAvAlIaUUpRoFUsyaBZHQKldqCPp6hR1fZQoaAZoCWgPQwgmbarukY32v5SGlFKUaBVLMmgWR0CpXVBZQpF1dX2UKGgGaAloD0MIlQ9B1eh1CsCUhpRSlGgVSzJoFkdAqVz3qVyFPHV9lChoBmgJaA9DCFTGv8+48P+/lIaUUpRoFUsyaBZHQKlcoYFaB7N1fZQoaAZoCWgPQwjMttPWiEABwJSGlFKUaBVLMmgWR0CpXrZNwiqydX2UKGgGaAloD0MIHv0v16IF9b+UhpRSlGgVSzJoFkdAqV5edf9gnnV9lChoBmgJaA9DCBx6i4f3/AbAlIaUUpRoFUsyaBZHQKleBbcoH9p1fZQoaAZoCWgPQwhQUIpW7uUIwJSGlFKUaBVLMmgWR0CpXa8cU/OddX2UKGgGaAloD0MITG9/LhoSBMCUhpRSlGgVSzJoFkdAqV+1/MGHHnV9lChoBmgJaA9DCIcXRKSmXQPAlIaUUpRoFUsyaBZHQKlfXgG8mKJ1fZQoaAZoCWgPQwhfmEwVjIoKwJSGlFKUaBVLMmgWR0CpXwU3fhuPdX2UKGgGaAloD0MIDW5rC89rBcCUhpRSlGgVSzJoFkdAqV6vA44p+nV9lChoBmgJaA9DCN6wbVFmg/S/lIaUUpRoFUsyaBZHQKlg3Bk7Oml1fZQoaAZoCWgPQwhOfLWjODcRwJSGlFKUaBVLMmgWR0CpYITtTkyUdX2UKGgGaAloD0MIcR+5Nel2BMCUhpRSlGgVSzJoFkdAqWAsGorFwXV9lChoBmgJaA9DCOc3TDRIwQvAlIaUUpRoFUsyaBZHQKlf1dTo+wF1fZQoaAZoCWgPQwihaYmV0egAwJSGlFKUaBVLMmgWR0CpYezHjp9rdX2UKGgGaAloD0MII74Ts17MCsCUhpRSlGgVSzJoFkdAqWGVE7W/anV9lChoBmgJaA9DCIhkyLH1zPu/lIaUUpRoFUsyaBZHQKlhPFn7Hhl1fZQoaAZoCWgPQwgvNq0UAnkNwJSGlFKUaBVLMmgWR0CpYOYFA3UAdX2UKGgGaAloD0MITtGRXP6TEcCUhpRSlGgVSzJoFkdAqWMXjABT43V9lChoBmgJaA9DCDI7i96poArAlIaUUpRoFUsyaBZHQKliv3qRlpZ1fZQoaAZoCWgPQwgQzNHj91YKwJSGlFKUaBVLMmgWR0CpYmbSZ0CBdX2UKGgGaAloD0MIzjgNUYUfA8CUhpRSlGgVSzJoFkdAqWIQekpI+XV9lChoBmgJaA9DCG+BBMWPMei/lIaUUpRoFUsyaBZHQKlkLyI55qx1fZQoaAZoCWgPQwhAijpzD4kCwJSGlFKUaBVLMmgWR0CpY9dKVY6odX2UKGgGaAloD0MI+U7MejE0AMCUhpRSlGgVSzJoFkdAqWN+l9BrvnV9lChoBmgJaA9DCBlUG5yIvvC/lIaUUpRoFUsyaBZHQKljKE9Mbm51fZQoaAZoCWgPQwjj/46oUJ0LwJSGlFKUaBVLMmgWR0CpZVZK3/gjdX2UKGgGaAloD0MINC4cCMnCCsCUhpRSlGgVSzJoFkdAqWT+gg5imXV9lChoBmgJaA9DCJcbDHVYYQfAlIaUUpRoFUsyaBZHQKlkpatcOb11fZQoaAZoCWgPQwgofLYODpYKwJSGlFKUaBVLMmgWR0CpZE+HrQgLdX2UKGgGaAloD0MIBYcXRKSGCcCUhpRSlGgVSzJoFkdAqWZqYNRWLnV9lChoBmgJaA9DCGHEPgEUo/W/lIaUUpRoFUsyaBZHQKlmEois4kx1fZQoaAZoCWgPQwiHGRpPBPEFwJSGlFKUaBVLMmgWR0CpZbnSnccmdX2UKGgGaAloD0MIXkiHhzAeBMCUhpRSlGgVSzJoFkdAqWVjrNW2gHV9lChoBmgJaA9DCJf+JalMcfu/lIaUUpRoFUsyaBZHQKlneFoL5RF1fZQoaAZoCWgPQwjF5A0w850DwJSGlFKUaBVLMmgWR0CpZyA4n4O+dX2UKGgGaAloD0MIkUYFTrZB87+UhpRSlGgVSzJoFkdAqWbHgzguRXV9lChoBmgJaA9DCLwjY7X5nwHAlIaUUpRoFUsyaBZHQKlmcSpzcRF1fZQoaAZoCWgPQwjnqKPjamT/v5SGlFKUaBVLMmgWR0CpaI9k8RthdX2UKGgGaAloD0MI8rBQa5oXAMCUhpRSlGgVSzJoFkdAqWg3ikwevXV9lChoBmgJaA9DCOhpwCDpE/S/lIaUUpRoFUsyaBZHQKln3t2s7uF1fZQoaAZoCWgPQwhYcaq1MAvtv5SGlFKUaBVLMmgWR0CpZ4iKR+z/dX2UKGgGaAloD0MIaqFkcmoHEMCUhpRSlGgVSzJoFkdAqWmlFa0Qb3V9lChoBmgJaA9DCJTai2g75gfAlIaUUpRoFUsyaBZHQKlpTVkMCtB1fZQoaAZoCWgPQwjT9xqC49IGwJSGlFKUaBVLMmgWR0CpaPTCcf/4dX2UKGgGaAloD0MI0hxZ+WWw+b+UhpRSlGgVSzJoFkdAqWieh7E5yXV9lChoBmgJaA9DCK7xmeyfJ/O/lIaUUpRoFUsyaBZHQKlq0ZaV2Rt1fZQoaAZoCWgPQwiSeeQPBh4FwJSGlFKUaBVLMmgWR0CpanmhVU++dX2UKGgGaAloD0MIOngmNElMCMCUhpRSlGgVSzJoFkdAqWog9Net0XV9lChoBmgJaA9DCJxOstXlFAHAlIaUUpRoFUsyaBZHQKlpysZpBX11fZQoaAZoCWgPQwgAcsKE0SwBwJSGlFKUaBVLMmgWR0CpbAvA44p+dX2UKGgGaAloD0MI/0EkQ46t97+UhpRSlGgVSzJoFkdAqWuz/EOy3XV9lChoBmgJaA9DCKck63B0Ffu/lIaUUpRoFUsyaBZHQKlrW3fAKv51fZQoaAZoCWgPQwgwndZtUHv1v5SGlFKUaBVLMmgWR0CpawUtI066dX2UKGgGaAloD0MI81SH3Aw36L+UhpRSlGgVSzJoFkdAqW1KT4cm0HV9lChoBmgJaA9DCAwCK4cWWQHAlIaUUpRoFUsyaBZHQKls8lb/wRZ1fZQoaAZoCWgPQwim8QuvJPngv5SGlFKUaBVLMmgWR0CpbJmnwXqJdX2UKGgGaAloD0MIRmEXRQ98EcCUhpRSlGgVSzJoFkdAqWxEFpwjuHV9lChoBmgJaA9DCG743XTLDue/lIaUUpRoFUsyaBZHQKlubmuDBdl1fZQoaAZoCWgPQwijyjDuBnEKwJSGlFKUaBVLMmgWR0CpbhcYht+DdX2UKGgGaAloD0MIIHwo0ZKH+7+UhpRSlGgVSzJoFkdAqW2+aUiY9nV9lChoBmgJaA9DCJVgcTjza/q/lIaUUpRoFUsyaBZHQKltaCeVcD91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (517 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.8574600690044463, "std_reward": 0.7872463704897807, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-28T19:48:40.852013"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:344e1e3bbc24e40fa7553fc7961ba7c60aa0aafbcbd3ef38af6f259e9571ec1c
3
+ size 3056