anthonyduer commited on
Commit
0f39a50
1 Parent(s): a290e2f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 226.55 +/- 49.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c68f36160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c68f361f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c68f36280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c68f36310>", "_build": "<function ActorCriticPolicy._build at 0x7f5c68f363a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c68f36430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c68f364c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c68f36550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c68f365e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c68f36670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c68f36700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5c68f31630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670395968968322449, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM390LxjnE89Axibu1nabL5CmtO8jImMOwAAAAAAAAAA1XSLvl4mYj/9SuG+MJMJvwYOeb50RxQ8AAAAAAAAAACAsra9w1ERuiV4VLTEq8Iuvve0O3EskzMAAAAAAACAP/Okxz3z4kY/Bq1XvkPzn74mtCm8Yy/nPAAAAAAAAAAAYPQyvoHr3z4BAzA9wYuWvnVXub3Z5oE9AAAAAAAAAADNzAE8wwUJuq2cUDMBWUKwBFaAu6uIybMAAIA/AACAP9rPtb09Wno84IQLvScle76G+bS9zjbFPAAAAAAAAAAAVc6kvuHeUT8aHAK/VFgXvwFss75gS+C9AAAAAAAAAACznFc94SL2PT7DIb7qXXK+p8c3vWq4rj0AAAAAAAAAANjKjr7NSOI+zWpMPgkwi75wE+K83VntPQAAAAAAAAAAAMBYPSGogbzMbkY9m88KPYKa4b01F9o9AACAPwAAgD+aS9E9IeGSP9ZGRT7/to6+mCFSPqKkgTsAAAAAAAAAAMAnSj4e60k/aBFpva4To75uJ+U9DrBIvgAAAAAAAAAAJrFPvgHf8bwu3qc5PhN2OHI9Uj52R+q4AACAPwAAgD8G7yC+XEYRvKBeALt8Q964m/l9PcYcIjoAAIA/AACAPzMu871Pk4s/+gbHvlAG677etAu+NrG6OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhZZ1/9ipb0CUhpRSlIwBbJRNEgGMAXSUR0CQk8XmvGIbdX2UKGgGaAloD0MIrMjogKQ7ckCUhpRSlGgVTSEBaBZHQJCUk8HObAl1fZQoaAZoCWgPQwjpmPOM/QFsQJSGlFKUaBVNWQFoFkdAkJVeGGmDUXV9lChoBmgJaA9DCIiDhChfaHJAlIaUUpRoFU1AAWgWR0CQlWY9xIatdX2UKGgGaAloD0MI+WTFcPWtcUCUhpRSlGgVTXYBaBZHQJCV+EIw/Ph1fZQoaAZoCWgPQwindLD+T6BwQJSGlFKUaBVNRgFoFkdAkJaKaPS2IHV9lChoBmgJaA9DCC20c5qFM29AlIaUUpRoFU0IAWgWR0CQl6yIpH7QdX2UKGgGaAloD0MITbotkYsUbUCUhpRSlGgVTSYBaBZHQJCY4PiDM/11fZQoaAZoCWgPQwgv+grSjFdOQJSGlFKUaBVL12gWR0CQmRJmukk9dX2UKGgGaAloD0MIog4r3LLDcUCUhpRSlGgVTTwBaBZHQJCZec+aBqd1fZQoaAZoCWgPQwhNu5hmendxQJSGlFKUaBVNJwFoFkdAkJpVVo6CDnV9lChoBmgJaA9DCFipoKJqRXJAlIaUUpRoFU0tAWgWR0CQmlwmVqvedX2UKGgGaAloD0MICvfKvNUxckCUhpRSlGgVTUwBaBZHQJCbKkIomXx1fZQoaAZoCWgPQwhqTIi5pKlxQJSGlFKUaBVNVQFoFkdAkJu1FlTWG3V9lChoBmgJaA9DCEt319mQ2GJAlIaUUpRoFU3oA2gWR0CQnDQzk6tDdX2UKGgGaAloD0MIURISaZvacUCUhpRSlGgVTQYBaBZHQJCeDOhTOxB1fZQoaAZoCWgPQwhZ3H9kOj9yQJSGlFKUaBVNVQFoFkdAkJ5QJw84gnV9lChoBmgJaA9DCFVNEHUf6m5AlIaUUpRoFU0GAWgWR0CQnrORDCxedX2UKGgGaAloD0MIgq0SLM6JckCUhpRSlGgVTV0BaBZHQJCfYTAWSEF1fZQoaAZoCWgPQwhL5IIz+PlvQJSGlFKUaBVNRAFoFkdAkJ9qagElmnV9lChoBmgJaA9DCMbhzK+mznFAlIaUUpRoFU1jAWgWR0CQoFA8SwnqdX2UKGgGaAloD0MIN1DgnfyOakCUhpRSlGgVTTMBaBZHQJChLZg5R0l1fZQoaAZoCWgPQwi85lWd1dJuQJSGlFKUaBVNEgFoFkdAkKFNSMtK7XV9lChoBmgJaA9DCL74oj3e+m1AlIaUUpRoFU0IAWgWR0CQolTQE6kqdX2UKGgGaAloD0MIHZHvUupVckCUhpRSlGgVTTgBaBZHQJCikz7/GVB1fZQoaAZoCWgPQwikbJG029xwQJSGlFKUaBVNFQFoFkdAkKK890RvnHV9lChoBmgJaA9DCAqjWdl+T3BAlIaUUpRoFU1XAWgWR0CQo9nwXqJNdX2UKGgGaAloD0MI7KaU18qCckCUhpRSlGgVTSsBaBZHQJCkKhGpdbB1fZQoaAZoCWgPQwgls3qHGwFyQJSGlFKUaBVNNAFoFkdAkKVjbvgFYHV9lChoBmgJaA9DCL5nJEJjH3JAlIaUUpRoFU1pAmgWR0CQpXT37DVIdX2UKGgGaAloD0MIGZKTiVukcUCUhpRSlGgVTVIBaBZHQJClx52Qnx91fZQoaAZoCWgPQwiLpx5p8CptQJSGlFKUaBVNFQFoFkdAkKYylenhsXV9lChoBmgJaA9DCM138BMH/25AlIaUUpRoFU0hAWgWR0CQpyLkCFK1dX2UKGgGaAloD0MINlg4STNicUCUhpRSlGgVTTQBaBZHQJCnWAZsKsx1fZQoaAZoCWgPQwjCiejXlj1yQJSGlFKUaBVNUAFoFkdAkKlmxlg+hXV9lChoBmgJaA9DCK4SLA5nlHBAlIaUUpRoFU03AWgWR0CQqZ876pHadX2UKGgGaAloD0MI3gGetPCCbUCUhpRSlGgVTV4BaBZHQJCp7kOqebx1fZQoaAZoCWgPQwiE9BQ5xOBvQJSGlFKUaBVNQQFoFkdAkKrdQ40dinV9lChoBmgJaA9DCMWOxqH+w3FAlIaUUpRoFU1HAWgWR0CQqyw2ETQFdX2UKGgGaAloD0MIxLKZQ5IPcUCUhpRSlGgVTTQBaBZHQJCrtYZEUj91fZQoaAZoCWgPQwh4CrlST8VxQJSGlFKUaBVNLQFoFkdAkKu97F85S3V9lChoBmgJaA9DCDmaIyu/Ym1AlIaUUpRoFUv8aBZHQJCr6jesPrh1fZQoaAZoCWgPQwg+0AoMmZJwQJSGlFKUaBVNOgFoFkdAkKw6NAC4jXV9lChoBmgJaA9DCDQPYJFfGUhAlIaUUpRoFUvZaBZHQJCsdLAYYSB1fZQoaAZoCWgPQwjOcAM+v2JxQJSGlFKUaBVNEQFoFkdAkK2FPJq7AnV9lChoBmgJaA9DCBXI7Cx6yW1AlIaUUpRoFU0rAWgWR0CQrkiWVu76dX2UKGgGaAloD0MICB7f3jXfcECUhpRSlGgVTRUBaBZHQJCuYxtYSxt1fZQoaAZoCWgPQwhszsEzoaVwQJSGlFKUaBVNIAFoFkdAkMHv4yoGZHV9lChoBmgJaA9DCK3ddqG5lHFAlIaUUpRoFU0pAWgWR0CQwmZn+Q2ddX2UKGgGaAloD0MIem6hK5F8cECUhpRSlGgVTSwBaBZHQJDFCKFZgXx1fZQoaAZoCWgPQwhn170ViS5sQJSGlFKUaBVNBgFoFkdAkMXBTS9dvHV9lChoBmgJaA9DCLpL4qzI9HBAlIaUUpRoFU0jAWgWR0CQxjanJkoXdX2UKGgGaAloD0MIOh+eJQijcECUhpRSlGgVTVoBaBZHQJDGbbTMJQd1fZQoaAZoCWgPQwg9SE+RA+xwQJSGlFKUaBVNYgFoFkdAkMZ+6I3zc3V9lChoBmgJaA9DCMdmR6pv/HBAlIaUUpRoFU0gAWgWR0CQxrX7tRekdX2UKGgGaAloD0MIr15FRsd6ckCUhpRSlGgVTUYBaBZHQJDHANWluWN1fZQoaAZoCWgPQwj8jXbcMGhyQJSGlFKUaBVNNQFoFkdAkMeF90A93nV9lChoBmgJaA9DCPDce7hks3JAlIaUUpRoFU0pAWgWR0CQx8qSHM2WdX2UKGgGaAloD0MI6GfqdQuRb0CUhpRSlGgVTT4BaBZHQJDIGEdvKlp1fZQoaAZoCWgPQwhszywJUP9vQJSGlFKUaBVNJAFoFkdAkMmw9FF2FHV9lChoBmgJaA9DCE+vlGUISnBAlIaUUpRoFU0pAWgWR0CQybmdAgPmdX2UKGgGaAloD0MINj0oKAU/cUCUhpRSlGgVTRYBaBZHQJDKbsZ5zHV1fZQoaAZoCWgPQwgfEynN5lFwQJSGlFKUaBVNMwFoFkdAkMujk6tDD3V9lChoBmgJaA9DCPEvgsZMT3NAlIaUUpRoFU2RAWgWR0CQy7sd1dPddX2UKGgGaAloD0MIthMlIVFUcECUhpRSlGgVTQgBaBZHQJDMvcynDSB1fZQoaAZoCWgPQwgdsKvJk6RxQJSGlFKUaBVNKgFoFkdAkM6Rq46OpHV9lChoBmgJaA9DCBsPtthtG29AlIaUUpRoFU0kAWgWR0CQzswCbMHKdX2UKGgGaAloD0MIXDl7ZzQPcECUhpRSlGgVTSwBaBZHQJDPYl/pdKN1fZQoaAZoCWgPQwgAqyNHejJwQJSGlFKUaBVNJgFoFkdAkM9sp1A7gnV9lChoBmgJaA9DCDIh5pJqk3FAlIaUUpRoFU0xAWgWR0CQz3z8xbjcdX2UKGgGaAloD0MIngjiPBzobUCUhpRSlGgVTR4BaBZHQJDPfKp1ifB1fZQoaAZoCWgPQwhrgNJQY6dxQJSGlFKUaBVNEgFoFkdAkM+kdvKlpHV9lChoBmgJaA9DCKZ7ndSXuXBAlIaUUpRoFU0PAWgWR0CQ0CARChN/dX2UKGgGaAloD0MIforjwCuUbUCUhpRSlGgVTSEBaBZHQJDQSz7di2F1fZQoaAZoCWgPQwi1F9F2TPZtQJSGlFKUaBVL92gWR0CQ0c/SH/LldX2UKGgGaAloD0MIzk9xHLgpc0CUhpRSlGgVTRwBaBZHQJDSCX0Gu9x1fZQoaAZoCWgPQwhR24ZREAhyQJSGlFKUaBVNHwFoFkdAkNIl7Qb++HV9lChoBmgJaA9DCHDSNChaPHJAlIaUUpRoFU0IAWgWR0CQ02gIQe3hdX2UKGgGaAloD0MIDyibcgU+Y0CUhpRSlGgVTegDaBZHQJDTsLRa5gB1fZQoaAZoCWgPQwjylxb1CVBxQJSGlFKUaBVNLgFoFkdAkNSQQ6IWQHV9lChoBmgJaA9DCAAd5ssLU3JAlIaUUpRoFU0fAWgWR0CQ1SE0zj3mdX2UKGgGaAloD0MI6gQ0EfYFc0CUhpRSlGgVS/1oFkdAkNZrFCLMtHV9lChoBmgJaA9DCBu4A3VKInJAlIaUUpRoFU0RAWgWR0CQ1orvb48EdX2UKGgGaAloD0MIGoums1MWcUCUhpRSlGgVTQ0BaBZHQJDXAX1rZap1fZQoaAZoCWgPQwje6GM+ILJsQJSGlFKUaBVNLAFoFkdAkNcx46fapXV9lChoBmgJaA9DCK1p3nEK0m9AlIaUUpRoFU0rAWgWR0CQ19n+hoM8dX2UKGgGaAloD0MIiPGaV7U7cECUhpRSlGgVTSgBaBZHQJDX/enAIpp1fZQoaAZoCWgPQwjhmdAkMbFxQJSGlFKUaBVNRQFoFkdAkNir4rSVnnV9lChoBmgJaA9DCCU/4lcsvWtAlIaUUpRoFU00AWgWR0CQ2NqrzXjEdX2UKGgGaAloD0MIRRFSt/PTcECUhpRSlGgVTR4BaBZHQJDZ57a7EpB1fZQoaAZoCWgPQwhvvDsyVndxQJSGlFKUaBVNWQFoFkdAkNn5ItlI3HV9lChoBmgJaA9DCPT91HipN3FAlIaUUpRoFU0YAWgWR0CQ2hADJU5udX2UKGgGaAloD0MIKH/3jlpccECUhpRSlGgVTQcBaBZHQJDcvWCmMwV1fZQoaAZoCWgPQwiLOJ1kq7txQJSGlFKUaBVNOQFoFkdAkNy+RkmQbXV9lChoBmgJaA9DCAKBzqRNl3BAlIaUUpRoFU0gAWgWR0CQ3O4x1xKhdX2UKGgGaAloD0MI78uZ7UrPcUCUhpRSlGgVS/loFkdAkN2ypFTef3V9lChoBmgJaA9DCPlOzHqxxG5AlIaUUpRoFU0OAWgWR0CQ3vHh0hePdX2UKGgGaAloD0MIoP8evPZhckCUhpRSlGgVTQkBaBZHQJDe/M5fdAR1fZQoaAZoCWgPQwjDD86nToZyQJSGlFKUaBVNJwFoFkdAkN8kwaisXHV9lChoBmgJaA9DCKEt51JcWHBAlIaUUpRoFUv+aBZHQJDfdnFo+Oh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed254d8b04176d603bd789115da91ed04013f7a6405adc6d7e42f2347cfcc0e
3
+ size 147146
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c68f36160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c68f361f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c68f36280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c68f36310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5c68f363a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5c68f36430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c68f364c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5c68f36550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c68f365e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c68f36670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c68f36700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5c68f31630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670395968968322449,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM390LxjnE89Axibu1nabL5CmtO8jImMOwAAAAAAAAAA1XSLvl4mYj/9SuG+MJMJvwYOeb50RxQ8AAAAAAAAAACAsra9w1ERuiV4VLTEq8Iuvve0O3EskzMAAAAAAACAP/Okxz3z4kY/Bq1XvkPzn74mtCm8Yy/nPAAAAAAAAAAAYPQyvoHr3z4BAzA9wYuWvnVXub3Z5oE9AAAAAAAAAADNzAE8wwUJuq2cUDMBWUKwBFaAu6uIybMAAIA/AACAP9rPtb09Wno84IQLvScle76G+bS9zjbFPAAAAAAAAAAAVc6kvuHeUT8aHAK/VFgXvwFss75gS+C9AAAAAAAAAACznFc94SL2PT7DIb7qXXK+p8c3vWq4rj0AAAAAAAAAANjKjr7NSOI+zWpMPgkwi75wE+K83VntPQAAAAAAAAAAAMBYPSGogbzMbkY9m88KPYKa4b01F9o9AACAPwAAgD+aS9E9IeGSP9ZGRT7/to6+mCFSPqKkgTsAAAAAAAAAAMAnSj4e60k/aBFpva4To75uJ+U9DrBIvgAAAAAAAAAAJrFPvgHf8bwu3qc5PhN2OHI9Uj52R+q4AACAPwAAgD8G7yC+XEYRvKBeALt8Q964m/l9PcYcIjoAAIA/AACAPzMu871Pk4s/+gbHvlAG677etAu+NrG6OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhZZ1/9ipb0CUhpRSlIwBbJRNEgGMAXSUR0CQk8XmvGIbdX2UKGgGaAloD0MIrMjogKQ7ckCUhpRSlGgVTSEBaBZHQJCUk8HObAl1fZQoaAZoCWgPQwjpmPOM/QFsQJSGlFKUaBVNWQFoFkdAkJVeGGmDUXV9lChoBmgJaA9DCIiDhChfaHJAlIaUUpRoFU1AAWgWR0CQlWY9xIatdX2UKGgGaAloD0MI+WTFcPWtcUCUhpRSlGgVTXYBaBZHQJCV+EIw/Ph1fZQoaAZoCWgPQwindLD+T6BwQJSGlFKUaBVNRgFoFkdAkJaKaPS2IHV9lChoBmgJaA9DCC20c5qFM29AlIaUUpRoFU0IAWgWR0CQl6yIpH7QdX2UKGgGaAloD0MITbotkYsUbUCUhpRSlGgVTSYBaBZHQJCY4PiDM/11fZQoaAZoCWgPQwgv+grSjFdOQJSGlFKUaBVL12gWR0CQmRJmukk9dX2UKGgGaAloD0MIog4r3LLDcUCUhpRSlGgVTTwBaBZHQJCZec+aBqd1fZQoaAZoCWgPQwhNu5hmendxQJSGlFKUaBVNJwFoFkdAkJpVVo6CDnV9lChoBmgJaA9DCFipoKJqRXJAlIaUUpRoFU0tAWgWR0CQmlwmVqvedX2UKGgGaAloD0MICvfKvNUxckCUhpRSlGgVTUwBaBZHQJCbKkIomXx1fZQoaAZoCWgPQwhqTIi5pKlxQJSGlFKUaBVNVQFoFkdAkJu1FlTWG3V9lChoBmgJaA9DCEt319mQ2GJAlIaUUpRoFU3oA2gWR0CQnDQzk6tDdX2UKGgGaAloD0MIURISaZvacUCUhpRSlGgVTQYBaBZHQJCeDOhTOxB1fZQoaAZoCWgPQwhZ3H9kOj9yQJSGlFKUaBVNVQFoFkdAkJ5QJw84gnV9lChoBmgJaA9DCFVNEHUf6m5AlIaUUpRoFU0GAWgWR0CQnrORDCxedX2UKGgGaAloD0MIgq0SLM6JckCUhpRSlGgVTV0BaBZHQJCfYTAWSEF1fZQoaAZoCWgPQwhL5IIz+PlvQJSGlFKUaBVNRAFoFkdAkJ9qagElmnV9lChoBmgJaA9DCMbhzK+mznFAlIaUUpRoFU1jAWgWR0CQoFA8SwnqdX2UKGgGaAloD0MIN1DgnfyOakCUhpRSlGgVTTMBaBZHQJChLZg5R0l1fZQoaAZoCWgPQwi85lWd1dJuQJSGlFKUaBVNEgFoFkdAkKFNSMtK7XV9lChoBmgJaA9DCL74oj3e+m1AlIaUUpRoFU0IAWgWR0CQolTQE6kqdX2UKGgGaAloD0MIHZHvUupVckCUhpRSlGgVTTgBaBZHQJCikz7/GVB1fZQoaAZoCWgPQwikbJG029xwQJSGlFKUaBVNFQFoFkdAkKK890RvnHV9lChoBmgJaA9DCAqjWdl+T3BAlIaUUpRoFU1XAWgWR0CQo9nwXqJNdX2UKGgGaAloD0MI7KaU18qCckCUhpRSlGgVTSsBaBZHQJCkKhGpdbB1fZQoaAZoCWgPQwgls3qHGwFyQJSGlFKUaBVNNAFoFkdAkKVjbvgFYHV9lChoBmgJaA9DCL5nJEJjH3JAlIaUUpRoFU1pAmgWR0CQpXT37DVIdX2UKGgGaAloD0MIGZKTiVukcUCUhpRSlGgVTVIBaBZHQJClx52Qnx91fZQoaAZoCWgPQwiLpx5p8CptQJSGlFKUaBVNFQFoFkdAkKYylenhsXV9lChoBmgJaA9DCM138BMH/25AlIaUUpRoFU0hAWgWR0CQpyLkCFK1dX2UKGgGaAloD0MINlg4STNicUCUhpRSlGgVTTQBaBZHQJCnWAZsKsx1fZQoaAZoCWgPQwjCiejXlj1yQJSGlFKUaBVNUAFoFkdAkKlmxlg+hXV9lChoBmgJaA9DCK4SLA5nlHBAlIaUUpRoFU03AWgWR0CQqZ876pHadX2UKGgGaAloD0MI3gGetPCCbUCUhpRSlGgVTV4BaBZHQJCp7kOqebx1fZQoaAZoCWgPQwiE9BQ5xOBvQJSGlFKUaBVNQQFoFkdAkKrdQ40dinV9lChoBmgJaA9DCMWOxqH+w3FAlIaUUpRoFU1HAWgWR0CQqyw2ETQFdX2UKGgGaAloD0MIxLKZQ5IPcUCUhpRSlGgVTTQBaBZHQJCrtYZEUj91fZQoaAZoCWgPQwh4CrlST8VxQJSGlFKUaBVNLQFoFkdAkKu97F85S3V9lChoBmgJaA9DCDmaIyu/Ym1AlIaUUpRoFUv8aBZHQJCr6jesPrh1fZQoaAZoCWgPQwg+0AoMmZJwQJSGlFKUaBVNOgFoFkdAkKw6NAC4jXV9lChoBmgJaA9DCDQPYJFfGUhAlIaUUpRoFUvZaBZHQJCsdLAYYSB1fZQoaAZoCWgPQwjOcAM+v2JxQJSGlFKUaBVNEQFoFkdAkK2FPJq7AnV9lChoBmgJaA9DCBXI7Cx6yW1AlIaUUpRoFU0rAWgWR0CQrkiWVu76dX2UKGgGaAloD0MICB7f3jXfcECUhpRSlGgVTRUBaBZHQJCuYxtYSxt1fZQoaAZoCWgPQwhszsEzoaVwQJSGlFKUaBVNIAFoFkdAkMHv4yoGZHV9lChoBmgJaA9DCK3ddqG5lHFAlIaUUpRoFU0pAWgWR0CQwmZn+Q2ddX2UKGgGaAloD0MIem6hK5F8cECUhpRSlGgVTSwBaBZHQJDFCKFZgXx1fZQoaAZoCWgPQwhn170ViS5sQJSGlFKUaBVNBgFoFkdAkMXBTS9dvHV9lChoBmgJaA9DCLpL4qzI9HBAlIaUUpRoFU0jAWgWR0CQxjanJkoXdX2UKGgGaAloD0MIOh+eJQijcECUhpRSlGgVTVoBaBZHQJDGbbTMJQd1fZQoaAZoCWgPQwg9SE+RA+xwQJSGlFKUaBVNYgFoFkdAkMZ+6I3zc3V9lChoBmgJaA9DCMdmR6pv/HBAlIaUUpRoFU0gAWgWR0CQxrX7tRekdX2UKGgGaAloD0MIr15FRsd6ckCUhpRSlGgVTUYBaBZHQJDHANWluWN1fZQoaAZoCWgPQwj8jXbcMGhyQJSGlFKUaBVNNQFoFkdAkMeF90A93nV9lChoBmgJaA9DCPDce7hks3JAlIaUUpRoFU0pAWgWR0CQx8qSHM2WdX2UKGgGaAloD0MI6GfqdQuRb0CUhpRSlGgVTT4BaBZHQJDIGEdvKlp1fZQoaAZoCWgPQwhszywJUP9vQJSGlFKUaBVNJAFoFkdAkMmw9FF2FHV9lChoBmgJaA9DCE+vlGUISnBAlIaUUpRoFU0pAWgWR0CQybmdAgPmdX2UKGgGaAloD0MINj0oKAU/cUCUhpRSlGgVTRYBaBZHQJDKbsZ5zHV1fZQoaAZoCWgPQwgfEynN5lFwQJSGlFKUaBVNMwFoFkdAkMujk6tDD3V9lChoBmgJaA9DCPEvgsZMT3NAlIaUUpRoFU2RAWgWR0CQy7sd1dPddX2UKGgGaAloD0MIthMlIVFUcECUhpRSlGgVTQgBaBZHQJDMvcynDSB1fZQoaAZoCWgPQwgdsKvJk6RxQJSGlFKUaBVNKgFoFkdAkM6Rq46OpHV9lChoBmgJaA9DCBsPtthtG29AlIaUUpRoFU0kAWgWR0CQzswCbMHKdX2UKGgGaAloD0MIXDl7ZzQPcECUhpRSlGgVTSwBaBZHQJDPYl/pdKN1fZQoaAZoCWgPQwgAqyNHejJwQJSGlFKUaBVNJgFoFkdAkM9sp1A7gnV9lChoBmgJaA9DCDIh5pJqk3FAlIaUUpRoFU0xAWgWR0CQz3z8xbjcdX2UKGgGaAloD0MIngjiPBzobUCUhpRSlGgVTR4BaBZHQJDPfKp1ifB1fZQoaAZoCWgPQwhrgNJQY6dxQJSGlFKUaBVNEgFoFkdAkM+kdvKlpHV9lChoBmgJaA9DCKZ7ndSXuXBAlIaUUpRoFU0PAWgWR0CQ0CARChN/dX2UKGgGaAloD0MIforjwCuUbUCUhpRSlGgVTSEBaBZHQJDQSz7di2F1fZQoaAZoCWgPQwi1F9F2TPZtQJSGlFKUaBVL92gWR0CQ0c/SH/LldX2UKGgGaAloD0MIzk9xHLgpc0CUhpRSlGgVTRwBaBZHQJDSCX0Gu9x1fZQoaAZoCWgPQwhR24ZREAhyQJSGlFKUaBVNHwFoFkdAkNIl7Qb++HV9lChoBmgJaA9DCHDSNChaPHJAlIaUUpRoFU0IAWgWR0CQ02gIQe3hdX2UKGgGaAloD0MIDyibcgU+Y0CUhpRSlGgVTegDaBZHQJDTsLRa5gB1fZQoaAZoCWgPQwjylxb1CVBxQJSGlFKUaBVNLgFoFkdAkNSQQ6IWQHV9lChoBmgJaA9DCAAd5ssLU3JAlIaUUpRoFU0fAWgWR0CQ1SE0zj3mdX2UKGgGaAloD0MI6gQ0EfYFc0CUhpRSlGgVS/1oFkdAkNZrFCLMtHV9lChoBmgJaA9DCBu4A3VKInJAlIaUUpRoFU0RAWgWR0CQ1orvb48EdX2UKGgGaAloD0MIGoums1MWcUCUhpRSlGgVTQ0BaBZHQJDXAX1rZap1fZQoaAZoCWgPQwje6GM+ILJsQJSGlFKUaBVNLAFoFkdAkNcx46fapXV9lChoBmgJaA9DCK1p3nEK0m9AlIaUUpRoFU0rAWgWR0CQ19n+hoM8dX2UKGgGaAloD0MIiPGaV7U7cECUhpRSlGgVTSgBaBZHQJDX/enAIpp1fZQoaAZoCWgPQwjhmdAkMbFxQJSGlFKUaBVNRQFoFkdAkNir4rSVnnV9lChoBmgJaA9DCCU/4lcsvWtAlIaUUpRoFU00AWgWR0CQ2NqrzXjEdX2UKGgGaAloD0MIRRFSt/PTcECUhpRSlGgVTR4BaBZHQJDZ57a7EpB1fZQoaAZoCWgPQwhvvDsyVndxQJSGlFKUaBVNWQFoFkdAkNn5ItlI3HV9lChoBmgJaA9DCPT91HipN3FAlIaUUpRoFU0YAWgWR0CQ2hADJU5udX2UKGgGaAloD0MIKH/3jlpccECUhpRSlGgVTQcBaBZHQJDcvWCmMwV1fZQoaAZoCWgPQwiLOJ1kq7txQJSGlFKUaBVNOQFoFkdAkNy+RkmQbXV9lChoBmgJaA9DCAKBzqRNl3BAlIaUUpRoFU0gAWgWR0CQ3O4x1xKhdX2UKGgGaAloD0MI78uZ7UrPcUCUhpRSlGgVS/loFkdAkN2ypFTef3V9lChoBmgJaA9DCPlOzHqxxG5AlIaUUpRoFU0OAWgWR0CQ3vHh0hePdX2UKGgGaAloD0MIoP8evPZhckCUhpRSlGgVTQkBaBZHQJDe/M5fdAR1fZQoaAZoCWgPQwjDD86nToZyQJSGlFKUaBVNJwFoFkdAkN8kwaisXHV9lChoBmgJaA9DCKEt51JcWHBAlIaUUpRoFUv+aBZHQJDfdnFo+Oh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42535db8dd45ba9a0f746626972f40f83c6bd957d6279f93cf08d378fe393380
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:642a948220e419342b9a490ebf1ba31e60b3fa692a6335356dd23e1426a6a697
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 226.5463247495505, "std_reward": 49.073860997720026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T07:19:48.501346"}