Upload 14 files
Browse files- README.md +195 -334
- all_results.json +10 -10
- eval_results.json +5 -5
- pytorch_model.bin +1 -1
- train_results.json +5 -5
- trainer_state.json +0 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -3,46 +3,31 @@ license: apache-2.0
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
-
- name: bart-base-spelling-nl-
|
7 |
results: []
|
8 |
---
|
9 |
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
[facebook/bart-base](https://huggingface.co/facebook/bart-base).
|
14 |
|
|
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Cer: 0.
|
18 |
|
19 |
## Model description
|
20 |
|
21 |
-
|
22 |
-
[facebook/bart-base](https://huggingface.co/facebook/bart-base)
|
23 |
-
trained on spelling correction. It leans on the excellent work by
|
24 |
-
Oliver Guhr ([github](https://github.com/oliverguhr/spelling),
|
25 |
-
[huggingface](https://huggingface.co/oliverguhr/spelling-correction-english-base)). Training
|
26 |
-
was performed on an AWS EC2 instance (g5.xlarge) on a single GPU.
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
-
|
31 |
-
[Valkuil.net](https://valkuil.net) context-sensitive spelling
|
32 |
-
checker.
|
33 |
|
34 |
## Training and evaluation data
|
35 |
|
36 |
-
|
37 |
-
of text from three public Dutch sources, downloaded from the
|
38 |
-
[Opus corpus](https://opus.nlpl.eu/):
|
39 |
-
|
40 |
-
- nl-europarlv7.1m.txt (2,000,000 lines)
|
41 |
-
- nl-opensubtitles2016.1m.txt (2,000,000 lines)
|
42 |
-
- nl-wikipedia.txt (964,203 lines)
|
43 |
-
|
44 |
-
Together these texts comprise 73,818,804 tokens.
|
45 |
-
|
46 |
|
47 |
## Training procedure
|
48 |
|
@@ -63,315 +48,191 @@ The following hyperparameters were used during training:
|
|
63 |
|
64 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
65 |
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
216 |
-
| 0.
|
217 |
-
| 0.
|
218 |
-
| 0.
|
219 |
-
| 0.
|
220 |
-
| 0.
|
221 |
-
| 0.
|
222 |
-
| 0.
|
223 |
-
| 0.
|
224 |
-
| 0.
|
225 |
-
| 0.
|
226 |
-
| 0.
|
227 |
-
| 0.
|
228 |
-
| 0.
|
229 |
-
| 0.
|
230 |
-
| 0.
|
231 |
-
| 0.
|
232 |
-
| 0.
|
233 |
-
| 0.
|
234 |
-
| 0.
|
235 |
-
| 0.
|
236 |
-
| 0.
|
237 |
-
| 0.
|
238 |
-
| 0.
|
239 |
-
| 0.
|
240 |
-
| 0.
|
241 |
-
| 0.
|
242 |
-
| 0.
|
243 |
-
| 0.
|
244 |
-
| 0.
|
245 |
-
| 0.
|
246 |
-
| 0.
|
247 |
-
| 0.
|
248 |
-
| 0.
|
249 |
-
| 0.
|
250 |
-
| 0.
|
251 |
-
| 0.0351 | 1.2 | 186000 | 0.0227 | 0.9199 |
|
252 |
-
| 0.0305 | 1.21 | 187000 | 0.0230 | 0.9199 |
|
253 |
-
| 0.0376 | 1.21 | 188000 | 0.0228 | 0.9199 |
|
254 |
-
| 0.0338 | 1.22 | 189000 | 0.0225 | 0.9200 |
|
255 |
-
| 0.0315 | 1.23 | 190000 | 0.0229 | 0.9199 |
|
256 |
-
| 0.0369 | 1.23 | 191000 | 0.0229 | 0.9199 |
|
257 |
-
| 0.0288 | 1.24 | 192000 | 0.0227 | 0.9199 |
|
258 |
-
| 0.0344 | 1.25 | 193000 | 0.0225 | 0.9199 |
|
259 |
-
| 0.0283 | 1.25 | 194000 | 0.0221 | 0.9199 |
|
260 |
-
| 0.0377 | 1.26 | 195000 | 0.0225 | 0.9198 |
|
261 |
-
| 0.0395 | 1.27 | 196000 | 0.0225 | 0.9199 |
|
262 |
-
| 0.0268 | 1.27 | 197000 | 0.0224 | 0.9199 |
|
263 |
-
| 0.032 | 1.28 | 198000 | 0.0222 | 0.9199 |
|
264 |
-
| 0.0328 | 1.28 | 199000 | 0.0221 | 0.9199 |
|
265 |
-
| 0.0278 | 1.29 | 200000 | 0.0220 | 0.9198 |
|
266 |
-
| 0.029 | 1.3 | 201000 | 0.0221 | 0.9199 |
|
267 |
-
| 0.0319 | 1.3 | 202000 | 0.0218 | 0.9199 |
|
268 |
-
| 0.0422 | 1.31 | 203000 | 0.0220 | 0.9199 |
|
269 |
-
| 0.0301 | 1.32 | 204000 | 0.0215 | 0.9198 |
|
270 |
-
| 0.0293 | 1.32 | 205000 | 0.0217 | 0.9198 |
|
271 |
-
| 0.0347 | 1.33 | 206000 | 0.0216 | 0.9199 |
|
272 |
-
| 0.0288 | 1.34 | 207000 | 0.0215 | 0.9199 |
|
273 |
-
| 0.0264 | 1.34 | 208000 | 0.0216 | 0.9199 |
|
274 |
-
| 0.0341 | 1.35 | 209000 | 0.0214 | 0.9199 |
|
275 |
-
| 0.029 | 1.36 | 210000 | 0.0213 | 0.9199 |
|
276 |
-
| 0.0281 | 1.36 | 211000 | 0.0218 | 0.9198 |
|
277 |
-
| 0.033 | 1.37 | 212000 | 0.0212 | 0.9199 |
|
278 |
-
| 0.0348 | 1.37 | 213000 | 0.0211 | 0.9199 |
|
279 |
-
| 0.0291 | 1.38 | 214000 | 0.0214 | 0.9199 |
|
280 |
-
| 0.0353 | 1.39 | 215000 | 0.0212 | 0.9199 |
|
281 |
-
| 0.0324 | 1.39 | 216000 | 0.0209 | 0.9199 |
|
282 |
-
| 0.0342 | 1.4 | 217000 | 0.0209 | 0.9199 |
|
283 |
-
| 0.0293 | 1.41 | 218000 | 0.0212 | 0.9199 |
|
284 |
-
| 0.0281 | 1.41 | 219000 | 0.0209 | 0.9199 |
|
285 |
-
| 0.0286 | 1.42 | 220000 | 0.0209 | 0.9198 |
|
286 |
-
| 0.0297 | 1.43 | 221000 | 0.0205 | 0.9200 |
|
287 |
-
| 0.0256 | 1.43 | 222000 | 0.0207 | 0.9199 |
|
288 |
-
| 0.0261 | 1.44 | 223000 | 0.0209 | 0.9198 |
|
289 |
-
| 0.0274 | 1.45 | 224000 | 0.0204 | 0.9199 |
|
290 |
-
| 0.0343 | 1.45 | 225000 | 0.0201 | 0.9199 |
|
291 |
-
| 0.0249 | 1.46 | 226000 | 0.0204 | 0.9199 |
|
292 |
-
| 0.0267 | 1.47 | 227000 | 0.0202 | 0.9199 |
|
293 |
-
| 0.0264 | 1.47 | 228000 | 0.0202 | 0.9199 |
|
294 |
-
| 0.031 | 1.48 | 229000 | 0.0201 | 0.9199 |
|
295 |
-
| 0.0273 | 1.48 | 230000 | 0.0199 | 0.9199 |
|
296 |
-
| 0.024 | 1.49 | 231000 | 0.0199 | 0.9199 |
|
297 |
-
| 0.0295 | 1.5 | 232000 | 0.0198 | 0.9199 |
|
298 |
-
| 0.0281 | 1.5 | 233000 | 0.0196 | 0.9199 |
|
299 |
-
| 0.0243 | 1.51 | 234000 | 0.0195 | 0.9198 |
|
300 |
-
| 0.0258 | 1.52 | 235000 | 0.0197 | 0.9199 |
|
301 |
-
| 0.0272 | 1.52 | 236000 | 0.0196 | 0.9198 |
|
302 |
-
| 0.0261 | 1.53 | 237000 | 0.0198 | 0.9199 |
|
303 |
-
| 0.0222 | 1.54 | 238000 | 0.0198 | 0.9199 |
|
304 |
-
| 0.0259 | 1.54 | 239000 | 0.0195 | 0.9199 |
|
305 |
-
| 0.0317 | 1.55 | 240000 | 0.0194 | 0.9199 |
|
306 |
-
| 0.0266 | 1.56 | 241000 | 0.0191 | 0.9199 |
|
307 |
-
| 0.0272 | 1.56 | 242000 | 0.0193 | 0.9199 |
|
308 |
-
| 0.0236 | 1.57 | 243000 | 0.0194 | 0.9199 |
|
309 |
-
| 0.0266 | 1.57 | 244000 | 0.0193 | 0.9198 |
|
310 |
-
| 0.027 | 1.58 | 245000 | 0.0195 | 0.9199 |
|
311 |
-
| 0.0257 | 1.59 | 246000 | 0.0192 | 0.9199 |
|
312 |
-
| 0.0276 | 1.59 | 247000 | 0.0190 | 0.9199 |
|
313 |
-
| 0.0238 | 1.6 | 248000 | 0.0188 | 0.9199 |
|
314 |
-
| 0.0301 | 1.61 | 249000 | 0.0188 | 0.9199 |
|
315 |
-
| 0.0273 | 1.61 | 250000 | 0.0189 | 0.9199 |
|
316 |
-
| 0.0246 | 1.62 | 251000 | 0.0187 | 0.9198 |
|
317 |
-
| 0.0309 | 1.63 | 252000 | 0.0187 | 0.9198 |
|
318 |
-
| 0.0237 | 1.63 | 253000 | 0.0188 | 0.9199 |
|
319 |
-
| 0.0234 | 1.64 | 254000 | 0.0184 | 0.9198 |
|
320 |
-
| 0.0246 | 1.65 | 255000 | 0.0186 | 0.9198 |
|
321 |
-
| 0.0213 | 1.65 | 256000 | 0.0182 | 0.9199 |
|
322 |
-
| 0.0251 | 1.66 | 257000 | 0.0182 | 0.9198 |
|
323 |
-
| 0.0236 | 1.67 | 258000 | 0.0184 | 0.9198 |
|
324 |
-
| 0.0276 | 1.67 | 259000 | 0.0185 | 0.9198 |
|
325 |
-
| 0.0233 | 1.68 | 260000 | 0.0182 | 0.9199 |
|
326 |
-
| 0.0205 | 1.68 | 261000 | 0.0183 | 0.9198 |
|
327 |
-
| 0.0253 | 1.69 | 262000 | 0.0181 | 0.9198 |
|
328 |
-
| 0.0221 | 1.7 | 263000 | 0.0180 | 0.9198 |
|
329 |
-
| 0.0228 | 1.7 | 264000 | 0.0182 | 0.9199 |
|
330 |
-
| 0.0209 | 1.71 | 265000 | 0.0181 | 0.9198 |
|
331 |
-
| 0.0319 | 1.72 | 266000 | 0.0179 | 0.9199 |
|
332 |
-
| 0.0236 | 1.72 | 267000 | 0.0178 | 0.9199 |
|
333 |
-
| 0.029 | 1.73 | 268000 | 0.0179 | 0.9198 |
|
334 |
-
| 0.0233 | 1.74 | 269000 | 0.0178 | 0.9198 |
|
335 |
-
| 0.0248 | 1.74 | 270000 | 0.0176 | 0.9198 |
|
336 |
-
| 0.0211 | 1.75 | 271000 | 0.0177 | 0.9198 |
|
337 |
-
| 0.0257 | 1.76 | 272000 | 0.0177 | 0.9198 |
|
338 |
-
| 0.0247 | 1.76 | 273000 | 0.0175 | 0.9199 |
|
339 |
-
| 0.0323 | 1.77 | 274000 | 0.0176 | 0.9199 |
|
340 |
-
| 0.0236 | 1.77 | 275000 | 0.0175 | 0.9198 |
|
341 |
-
| 0.0202 | 1.78 | 276000 | 0.0176 | 0.9198 |
|
342 |
-
| 0.0318 | 1.79 | 277000 | 0.0174 | 0.9199 |
|
343 |
-
| 0.0206 | 1.79 | 278000 | 0.0175 | 0.9198 |
|
344 |
-
| 0.0245 | 1.8 | 279000 | 0.0174 | 0.9199 |
|
345 |
-
| 0.0177 | 1.81 | 280000 | 0.0174 | 0.9199 |
|
346 |
-
| 0.0268 | 1.81 | 281000 | 0.0174 | 0.9199 |
|
347 |
-
| 0.0209 | 1.82 | 282000 | 0.0172 | 0.9199 |
|
348 |
-
| 0.0248 | 1.83 | 283000 | 0.0171 | 0.9198 |
|
349 |
-
| 0.0205 | 1.83 | 284000 | 0.0173 | 0.9198 |
|
350 |
-
| 0.0231 | 1.84 | 285000 | 0.0172 | 0.9199 |
|
351 |
-
| 0.0278 | 1.85 | 286000 | 0.0171 | 0.9198 |
|
352 |
-
| 0.0244 | 1.85 | 287000 | 0.0171 | 0.9198 |
|
353 |
-
| 0.0223 | 1.86 | 288000 | 0.0169 | 0.9198 |
|
354 |
-
| 0.0285 | 1.87 | 289000 | 0.0168 | 0.9198 |
|
355 |
-
| 0.0223 | 1.87 | 290000 | 0.0169 | 0.9198 |
|
356 |
-
| 0.0231 | 1.88 | 291000 | 0.0169 | 0.9198 |
|
357 |
-
| 0.0192 | 1.88 | 292000 | 0.0169 | 0.9198 |
|
358 |
-
| 0.0234 | 1.89 | 293000 | 0.0168 | 0.9198 |
|
359 |
-
| 0.0223 | 1.9 | 294000 | 0.0168 | 0.9198 |
|
360 |
-
| 0.0255 | 1.9 | 295000 | 0.0168 | 0.9198 |
|
361 |
-
| 0.0248 | 1.91 | 296000 | 0.0166 | 0.9198 |
|
362 |
-
| 0.0216 | 1.92 | 297000 | 0.0166 | 0.9198 |
|
363 |
-
| 0.0219 | 1.92 | 298000 | 0.0167 | 0.9198 |
|
364 |
-
| 0.0196 | 1.93 | 299000 | 0.0167 | 0.9198 |
|
365 |
-
| 0.0175 | 1.94 | 300000 | 0.0166 | 0.9198 |
|
366 |
-
| 0.0228 | 1.94 | 301000 | 0.0165 | 0.9198 |
|
367 |
-
| 0.019 | 1.95 | 302000 | 0.0165 | 0.9198 |
|
368 |
-
| 0.0191 | 1.96 | 303000 | 0.0165 | 0.9198 |
|
369 |
-
| 0.0249 | 1.96 | 304000 | 0.0165 | 0.9198 |
|
370 |
-
| 0.0233 | 1.97 | 305000 | 0.0164 | 0.9198 |
|
371 |
-
| 0.0211 | 1.97 | 306000 | 0.0164 | 0.9198 |
|
372 |
-
| 0.02 | 1.98 | 307000 | 0.0164 | 0.9198 |
|
373 |
-
| 0.0191 | 1.99 | 308000 | 0.0164 | 0.9198 |
|
374 |
-
| 0.0214 | 1.99 | 309000 | 0.0164 | 0.9198 |
|
375 |
|
376 |
|
377 |
### Framework versions
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
+
- name: bart-base-spelling-nl-1m-3
|
7 |
results: []
|
8 |
---
|
9 |
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
# bart-base-spelling-nl-1m-3
|
|
|
14 |
|
15 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0053
|
18 |
+
- Cer: 0.0117
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
More information needed
|
|
|
|
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Training procedure
|
33 |
|
|
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
50 |
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
51 |
+
| 0.0834 | 0.01 | 1000 | 0.0603 | 0.9216 |
|
52 |
+
| 0.0566 | 0.02 | 2000 | 0.0467 | 0.9217 |
|
53 |
+
| 0.0534 | 0.03 | 3000 | 0.0436 | 0.9216 |
|
54 |
+
| 0.0461 | 0.04 | 4000 | 0.0392 | 0.9216 |
|
55 |
+
| 0.0416 | 0.05 | 5000 | 0.0354 | 0.9216 |
|
56 |
+
| 0.0433 | 0.06 | 6000 | 0.0336 | 0.9216 |
|
57 |
+
| 0.045 | 0.08 | 7000 | 0.0315 | 0.9216 |
|
58 |
+
| 0.0452 | 0.09 | 8000 | 0.0305 | 0.9216 |
|
59 |
+
| 0.04 | 0.1 | 9000 | 0.0281 | 0.9216 |
|
60 |
+
| 0.0307 | 0.11 | 10000 | 0.0273 | 0.9216 |
|
61 |
+
| 0.0382 | 0.12 | 11000 | 0.0269 | 0.9216 |
|
62 |
+
| 0.036 | 0.13 | 12000 | 0.0254 | 0.9216 |
|
63 |
+
| 0.0412 | 0.14 | 13000 | 0.0258 | 0.9216 |
|
64 |
+
| 0.0404 | 0.15 | 14000 | 0.0238 | 0.9216 |
|
65 |
+
| 0.0265 | 0.16 | 15000 | 0.0239 | 0.9216 |
|
66 |
+
| 0.029 | 0.17 | 16000 | 0.0235 | 0.9216 |
|
67 |
+
| 0.0295 | 0.18 | 17000 | 0.0218 | 0.9216 |
|
68 |
+
| 0.0262 | 0.19 | 18000 | 0.0214 | 0.9216 |
|
69 |
+
| 0.0274 | 0.21 | 19000 | 0.0222 | 0.9216 |
|
70 |
+
| 0.0317 | 0.22 | 20000 | 0.0204 | 0.9216 |
|
71 |
+
| 0.0248 | 0.23 | 21000 | 0.0204 | 0.9216 |
|
72 |
+
| 0.0258 | 0.24 | 22000 | 0.0195 | 0.9216 |
|
73 |
+
| 0.0247 | 0.25 | 23000 | 0.0188 | 0.9216 |
|
74 |
+
| 0.0285 | 0.26 | 24000 | 0.0191 | 0.9215 |
|
75 |
+
| 0.031 | 0.27 | 25000 | 0.0192 | 0.9216 |
|
76 |
+
| 0.0267 | 0.28 | 26000 | 0.0188 | 0.9216 |
|
77 |
+
| 0.0245 | 0.29 | 27000 | 0.0177 | 0.9216 |
|
78 |
+
| 0.0258 | 0.3 | 28000 | 0.0177 | 0.9216 |
|
79 |
+
| 0.0235 | 0.31 | 29000 | 0.0169 | 0.9216 |
|
80 |
+
| 0.0235 | 0.32 | 30000 | 0.0176 | 0.9216 |
|
81 |
+
| 0.0223 | 0.34 | 31000 | 0.0165 | 0.9216 |
|
82 |
+
| 0.0219 | 0.35 | 32000 | 0.0167 | 0.9216 |
|
83 |
+
| 0.0214 | 0.36 | 33000 | 0.0165 | 0.9216 |
|
84 |
+
| 0.0232 | 0.37 | 34000 | 0.0163 | 0.9216 |
|
85 |
+
| 0.0192 | 0.38 | 35000 | 0.0162 | 0.9216 |
|
86 |
+
| 0.0159 | 0.39 | 36000 | 0.0160 | 0.9216 |
|
87 |
+
| 0.0205 | 0.4 | 37000 | 0.0150 | 0.9216 |
|
88 |
+
| 0.0197 | 0.41 | 38000 | 0.0152 | 0.9216 |
|
89 |
+
| 0.0205 | 0.42 | 39000 | 0.0150 | 0.9216 |
|
90 |
+
| 0.0182 | 0.43 | 40000 | 0.0145 | 0.9216 |
|
91 |
+
| 0.0204 | 0.44 | 41000 | 0.0139 | 0.9216 |
|
92 |
+
| 0.0201 | 0.45 | 42000 | 0.0146 | 0.9216 |
|
93 |
+
| 0.0202 | 0.46 | 43000 | 0.0132 | 0.9215 |
|
94 |
+
| 0.0219 | 0.48 | 44000 | 0.0146 | 0.9216 |
|
95 |
+
| 0.0161 | 0.49 | 45000 | 0.0134 | 0.9215 |
|
96 |
+
| 0.0172 | 0.5 | 46000 | 0.0137 | 0.9216 |
|
97 |
+
| 0.0199 | 0.51 | 47000 | 0.0133 | 0.9215 |
|
98 |
+
| 0.0211 | 0.52 | 48000 | 0.0132 | 0.9215 |
|
99 |
+
| 0.0184 | 0.53 | 49000 | 0.0136 | 0.9216 |
|
100 |
+
| 0.0191 | 0.54 | 50000 | 0.0129 | 0.9216 |
|
101 |
+
| 0.017 | 0.55 | 51000 | 0.0127 | 0.9216 |
|
102 |
+
| 0.0188 | 0.56 | 52000 | 0.0127 | 0.9215 |
|
103 |
+
| 0.0157 | 0.57 | 53000 | 0.0128 | 0.9216 |
|
104 |
+
| 0.0158 | 0.58 | 54000 | 0.0127 | 0.9216 |
|
105 |
+
| 0.0145 | 0.59 | 55000 | 0.0117 | 0.9216 |
|
106 |
+
| 0.0148 | 0.61 | 56000 | 0.0123 | 0.9216 |
|
107 |
+
| 0.0153 | 0.62 | 57000 | 0.0115 | 0.9216 |
|
108 |
+
| 0.0182 | 0.63 | 58000 | 0.0115 | 0.9216 |
|
109 |
+
| 0.0178 | 0.64 | 59000 | 0.0112 | 0.9215 |
|
110 |
+
| 0.0187 | 0.65 | 60000 | 0.0113 | 0.9215 |
|
111 |
+
| 0.0174 | 0.66 | 61000 | 0.0119 | 0.9216 |
|
112 |
+
| 0.0135 | 0.67 | 62000 | 0.0115 | 0.9215 |
|
113 |
+
| 0.0167 | 0.68 | 63000 | 0.0112 | 0.9216 |
|
114 |
+
| 0.0163 | 0.69 | 64000 | 0.0111 | 0.9215 |
|
115 |
+
| 0.0128 | 0.7 | 65000 | 0.0110 | 0.9215 |
|
116 |
+
| 0.0178 | 0.71 | 66000 | 0.0113 | 0.9215 |
|
117 |
+
| 0.0142 | 0.72 | 67000 | 0.0110 | 0.9215 |
|
118 |
+
| 0.0143 | 0.74 | 68000 | 0.0110 | 0.9215 |
|
119 |
+
| 0.0168 | 0.75 | 69000 | 0.0106 | 0.9216 |
|
120 |
+
| 0.0136 | 0.76 | 70000 | 0.0107 | 0.9215 |
|
121 |
+
| 0.0141 | 0.77 | 71000 | 0.0104 | 0.9215 |
|
122 |
+
| 0.0217 | 0.78 | 72000 | 0.0115 | 0.9216 |
|
123 |
+
| 0.012 | 0.79 | 73000 | 0.0105 | 0.9215 |
|
124 |
+
| 0.0141 | 0.8 | 74000 | 0.0100 | 0.9215 |
|
125 |
+
| 0.0136 | 0.81 | 75000 | 0.0096 | 0.9215 |
|
126 |
+
| 0.0106 | 0.82 | 76000 | 0.0104 | 0.9216 |
|
127 |
+
| 0.0176 | 0.83 | 77000 | 0.0102 | 0.9216 |
|
128 |
+
| 0.0169 | 0.84 | 78000 | 0.0099 | 0.9215 |
|
129 |
+
| 0.0118 | 0.85 | 79000 | 0.0102 | 0.9215 |
|
130 |
+
| 0.0178 | 0.86 | 80000 | 0.0095 | 0.9215 |
|
131 |
+
| 0.0145 | 0.88 | 81000 | 0.0097 | 0.9216 |
|
132 |
+
| 0.0154 | 0.89 | 82000 | 0.0099 | 0.9215 |
|
133 |
+
| 0.0129 | 0.9 | 83000 | 0.0094 | 0.9215 |
|
134 |
+
| 0.0125 | 0.91 | 84000 | 0.0097 | 0.9215 |
|
135 |
+
| 0.0147 | 0.92 | 85000 | 0.0093 | 0.9215 |
|
136 |
+
| 0.0145 | 0.93 | 86000 | 0.0091 | 0.9215 |
|
137 |
+
| 0.0121 | 0.94 | 87000 | 0.0089 | 0.9215 |
|
138 |
+
| 0.0125 | 0.95 | 88000 | 0.0094 | 0.9215 |
|
139 |
+
| 0.0113 | 0.96 | 89000 | 0.0088 | 0.9216 |
|
140 |
+
| 0.0098 | 0.97 | 90000 | 0.0094 | 0.9216 |
|
141 |
+
| 0.0137 | 0.98 | 91000 | 0.0089 | 0.9215 |
|
142 |
+
| 0.0105 | 0.99 | 92000 | 0.0091 | 0.9215 |
|
143 |
+
| 0.01 | 1.01 | 93000 | 0.0090 | 0.9216 |
|
144 |
+
| 0.0103 | 1.02 | 94000 | 0.0087 | 0.9216 |
|
145 |
+
| 0.0103 | 1.03 | 95000 | 0.0091 | 0.9215 |
|
146 |
+
| 0.0107 | 1.04 | 96000 | 0.0088 | 0.9216 |
|
147 |
+
| 0.0109 | 1.05 | 97000 | 0.0087 | 0.9215 |
|
148 |
+
| 0.0102 | 1.06 | 98000 | 0.0090 | 0.9216 |
|
149 |
+
| 0.0109 | 1.07 | 99000 | 0.0087 | 0.9215 |
|
150 |
+
| 0.0094 | 1.08 | 100000 | 0.0084 | 0.9215 |
|
151 |
+
| 0.009 | 1.09 | 101000 | 0.0085 | 0.9215 |
|
152 |
+
| 0.0085 | 1.1 | 102000 | 0.0084 | 0.9216 |
|
153 |
+
| 0.0123 | 1.11 | 103000 | 0.0085 | 0.9215 |
|
154 |
+
| 0.0094 | 1.12 | 104000 | 0.0084 | 0.9215 |
|
155 |
+
| 0.0076 | 1.14 | 105000 | 0.0081 | 0.9215 |
|
156 |
+
| 0.0119 | 1.15 | 106000 | 0.0079 | 0.9216 |
|
157 |
+
| 0.0079 | 1.16 | 107000 | 0.0081 | 0.9216 |
|
158 |
+
| 0.0108 | 1.17 | 108000 | 0.0080 | 0.9216 |
|
159 |
+
| 0.01 | 1.18 | 109000 | 0.0077 | 0.9216 |
|
160 |
+
| 0.0112 | 1.19 | 110000 | 0.0077 | 0.9216 |
|
161 |
+
| 0.0092 | 1.2 | 111000 | 0.0076 | 0.9215 |
|
162 |
+
| 0.0097 | 1.21 | 112000 | 0.0077 | 0.9215 |
|
163 |
+
| 0.0093 | 1.22 | 113000 | 0.0078 | 0.9215 |
|
164 |
+
| 0.0106 | 1.23 | 114000 | 0.0077 | 0.9215 |
|
165 |
+
| 0.0107 | 1.24 | 115000 | 0.0076 | 0.9215 |
|
166 |
+
| 0.0111 | 1.25 | 116000 | 0.0077 | 0.9215 |
|
167 |
+
| 0.0118 | 1.26 | 117000 | 0.0076 | 0.9215 |
|
168 |
+
| 0.0088 | 1.28 | 118000 | 0.0076 | 0.9215 |
|
169 |
+
| 0.01 | 1.29 | 119000 | 0.0076 | 0.9215 |
|
170 |
+
| 0.0102 | 1.3 | 120000 | 0.0076 | 0.9215 |
|
171 |
+
| 0.0106 | 1.31 | 121000 | 0.0076 | 0.9215 |
|
172 |
+
| 0.0099 | 1.32 | 122000 | 0.0077 | 0.9215 |
|
173 |
+
| 0.0099 | 1.33 | 123000 | 0.0077 | 0.9216 |
|
174 |
+
| 0.0105 | 1.34 | 124000 | 0.0075 | 0.9216 |
|
175 |
+
| 0.0082 | 1.35 | 125000 | 0.0074 | 0.9216 |
|
176 |
+
| 0.0088 | 1.36 | 126000 | 0.0072 | 0.9215 |
|
177 |
+
| 0.0077 | 1.37 | 127000 | 0.0070 | 0.9215 |
|
178 |
+
| 0.0063 | 1.38 | 128000 | 0.0074 | 0.9216 |
|
179 |
+
| 0.0084 | 1.39 | 129000 | 0.0069 | 0.9215 |
|
180 |
+
| 0.0085 | 1.41 | 130000 | 0.0071 | 0.9215 |
|
181 |
+
| 0.0107 | 1.42 | 131000 | 0.0067 | 0.9215 |
|
182 |
+
| 0.0064 | 1.43 | 132000 | 0.0068 | 0.9215 |
|
183 |
+
| 0.0064 | 1.44 | 133000 | 0.0069 | 0.9215 |
|
184 |
+
| 0.0139 | 1.45 | 134000 | 0.0067 | 0.9216 |
|
185 |
+
| 0.0093 | 1.46 | 135000 | 0.0068 | 0.9216 |
|
186 |
+
| 0.009 | 1.47 | 136000 | 0.0067 | 0.9215 |
|
187 |
+
| 0.0083 | 1.48 | 137000 | 0.0065 | 0.9216 |
|
188 |
+
| 0.0108 | 1.49 | 138000 | 0.0064 | 0.9215 |
|
189 |
+
| 0.0074 | 1.5 | 139000 | 0.0066 | 0.9215 |
|
190 |
+
| 0.009 | 1.51 | 140000 | 0.0064 | 0.9216 |
|
191 |
+
| 0.0062 | 1.52 | 141000 | 0.0064 | 0.9215 |
|
192 |
+
| 0.007 | 1.54 | 142000 | 0.0063 | 0.9215 |
|
193 |
+
| 0.0082 | 1.55 | 143000 | 0.0062 | 0.9215 |
|
194 |
+
| 0.0077 | 1.56 | 144000 | 0.0064 | 0.9215 |
|
195 |
+
| 0.0094 | 1.57 | 145000 | 0.0062 | 0.9215 |
|
196 |
+
| 0.0085 | 1.58 | 146000 | 0.0063 | 0.9215 |
|
197 |
+
| 0.0091 | 1.59 | 147000 | 0.0062 | 0.9215 |
|
198 |
+
| 0.0087 | 1.6 | 148000 | 0.0061 | 0.9215 |
|
199 |
+
| 0.0066 | 1.61 | 149000 | 0.0062 | 0.9215 |
|
200 |
+
| 0.0087 | 1.62 | 150000 | 0.0061 | 0.9215 |
|
201 |
+
| 0.0059 | 1.63 | 151000 | 0.0059 | 0.9215 |
|
202 |
+
| 0.0086 | 1.64 | 152000 | 0.0059 | 0.9215 |
|
203 |
+
| 0.0066 | 1.65 | 153000 | 0.0059 | 0.9215 |
|
204 |
+
| 0.0076 | 1.66 | 154000 | 0.0058 | 0.9215 |
|
205 |
+
| 0.0073 | 1.68 | 155000 | 0.0060 | 0.9215 |
|
206 |
+
| 0.0118 | 1.69 | 156000 | 0.0060 | 0.9215 |
|
207 |
+
| 0.0058 | 1.7 | 157000 | 0.0059 | 0.9215 |
|
208 |
+
| 0.0093 | 1.71 | 158000 | 0.0058 | 0.9215 |
|
209 |
+
| 0.0079 | 1.72 | 159000 | 0.0058 | 0.9215 |
|
210 |
+
| 0.0063 | 1.73 | 160000 | 0.0059 | 0.9215 |
|
211 |
+
| 0.0065 | 1.74 | 161000 | 0.0056 | 0.9215 |
|
212 |
+
| 0.0105 | 1.75 | 162000 | 0.0057 | 0.9215 |
|
213 |
+
| 0.0075 | 1.76 | 163000 | 0.0055 | 0.9215 |
|
214 |
+
| 0.0069 | 1.77 | 164000 | 0.0056 | 0.9215 |
|
215 |
+
| 0.0075 | 1.78 | 165000 | 0.0056 | 0.9215 |
|
216 |
+
| 0.0067 | 1.79 | 166000 | 0.0055 | 0.9215 |
|
217 |
+
| 0.0069 | 1.81 | 167000 | 0.0056 | 0.9215 |
|
218 |
+
| 0.0063 | 1.82 | 168000 | 0.0056 | 0.9215 |
|
219 |
+
| 0.0058 | 1.83 | 169000 | 0.0055 | 0.9215 |
|
220 |
+
| 0.0058 | 1.84 | 170000 | 0.0054 | 0.9215 |
|
221 |
+
| 0.0081 | 1.85 | 171000 | 0.0055 | 0.9215 |
|
222 |
+
| 0.0071 | 1.86 | 172000 | 0.0054 | 0.9215 |
|
223 |
+
| 0.0077 | 1.87 | 173000 | 0.0054 | 0.9215 |
|
224 |
+
| 0.0053 | 1.88 | 174000 | 0.0053 | 0.9215 |
|
225 |
+
| 0.0067 | 1.89 | 175000 | 0.0053 | 0.9215 |
|
226 |
+
| 0.0066 | 1.9 | 176000 | 0.0053 | 0.9215 |
|
227 |
+
| 0.0084 | 1.91 | 177000 | 0.0053 | 0.9215 |
|
228 |
+
| 0.0066 | 1.92 | 178000 | 0.0052 | 0.9215 |
|
229 |
+
| 0.0057 | 1.94 | 179000 | 0.0053 | 0.9215 |
|
230 |
+
| 0.0059 | 1.95 | 180000 | 0.0052 | 0.9215 |
|
231 |
+
| 0.0053 | 1.96 | 181000 | 0.0053 | 0.9215 |
|
232 |
+
| 0.0056 | 1.97 | 182000 | 0.0052 | 0.9215 |
|
233 |
+
| 0.0054 | 1.98 | 183000 | 0.0052 | 0.9215 |
|
234 |
+
| 0.0053 | 1.99 | 184000 | 0.0052 | 0.9215 |
|
235 |
+
| 0.0066 | 2.0 | 185000 | 0.0052 | 0.9215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
|
238 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
-
"eval_cer": 0.
|
4 |
-
"eval_loss": 0.
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 2000,
|
7 |
-
"eval_samples_per_second": 1.
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
-
"train_loss": 0.
|
10 |
-
"train_runtime":
|
11 |
-
"train_samples":
|
12 |
-
"train_samples_per_second": 28.
|
13 |
-
"train_steps_per_second": 0.
|
14 |
}
|
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
+
"eval_cer": 0.01165665167457964,
|
4 |
+
"eval_loss": 0.005274078343063593,
|
5 |
+
"eval_runtime": 1990.4275,
|
6 |
"eval_samples": 2000,
|
7 |
+
"eval_samples_per_second": 1.005,
|
8 |
+
"eval_steps_per_second": 0.251,
|
9 |
+
"train_loss": 0.016045775709704408,
|
10 |
+
"train_runtime": 206173.8627,
|
11 |
+
"train_samples": 2960086,
|
12 |
+
"train_samples_per_second": 28.714,
|
13 |
+
"train_steps_per_second": 0.897
|
14 |
}
|
eval_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
-
"eval_cer": 0.
|
4 |
-
"eval_loss": 0.
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 2000,
|
7 |
-
"eval_samples_per_second": 1.
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
+
"eval_cer": 0.01165665167457964,
|
4 |
+
"eval_loss": 0.005274078343063593,
|
5 |
+
"eval_runtime": 1990.4275,
|
6 |
"eval_samples": 2000,
|
7 |
+
"eval_samples_per_second": 1.005,
|
8 |
+
"eval_steps_per_second": 0.251
|
9 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557971229
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96696783fd7389a128057a8994d2b0151034ffed0645a6a6c5b271c1514f2b0b
|
3 |
size 557971229
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
-
"train_samples":
|
6 |
-
"train_samples_per_second": 28.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 2.0,
|
3 |
+
"train_loss": 0.016045775709704408,
|
4 |
+
"train_runtime": 206173.8627,
|
5 |
+
"train_samples": 2960086,
|
6 |
+
"train_samples_per_second": 28.714,
|
7 |
+
"train_steps_per_second": 0.897
|
8 |
}
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3707
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e466518c4579bd6bee53fdf30377e705184fd9f7e036056a6b09423ab880b7fd
|
3 |
size 3707
|