update model card README.md
Browse files
README.md
CHANGED
@@ -19,12 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- F1: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- Mae: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,21 +55,21 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae |
|
57 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
- Transformers 4.20.1
|
73 |
-
- Pytorch 1.
|
74 |
- Datasets 2.3.2
|
75 |
- Tokenizers 0.12.1
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.9064
|
23 |
+
- Accuracy: 0.8334
|
24 |
+
- F1: 0.3322
|
25 |
+
- Precision: 0.2498
|
26 |
+
- Recall: 0.4961
|
27 |
+
- Mae: 0.1666
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae |
|
57 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
|
58 |
+
| 0.3869 | 1.0 | 2395 | 0.2905 | 0.8778 | 0.3528 | 0.3164 | 0.3988 | 0.1222 |
|
59 |
+
| 0.3539 | 2.0 | 4790 | 0.4143 | 0.8278 | 0.3465 | 0.2536 | 0.5467 | 0.1722 |
|
60 |
+
| 0.3124 | 3.0 | 7185 | 0.3327 | 0.8568 | 0.3583 | 0.2864 | 0.4786 | 0.1432 |
|
61 |
+
| 0.2817 | 4.0 | 9580 | 0.5621 | 0.7329 | 0.3092 | 0.1972 | 0.7160 | 0.2671 |
|
62 |
+
| 0.2651 | 5.0 | 11975 | 0.4376 | 0.8520 | 0.3607 | 0.2821 | 0.5 | 0.1480 |
|
63 |
+
| 0.2249 | 6.0 | 14370 | 0.5581 | 0.8326 | 0.3312 | 0.2485 | 0.4961 | 0.1674 |
|
64 |
+
| 0.1958 | 7.0 | 16765 | 0.6728 | 0.8382 | 0.3234 | 0.2484 | 0.4630 | 0.1618 |
|
65 |
+
| 0.1899 | 8.0 | 19160 | 0.7404 | 0.8304 | 0.3316 | 0.2471 | 0.5039 | 0.1696 |
|
66 |
+
| 0.1619 | 9.0 | 21555 | 0.8309 | 0.8461 | 0.3382 | 0.2639 | 0.4708 | 0.1539 |
|
67 |
+
| 0.1453 | 10.0 | 23950 | 0.9064 | 0.8334 | 0.3322 | 0.2498 | 0.4961 | 0.1666 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
- Transformers 4.20.1
|
73 |
+
- Pytorch 1.12.0+cu102
|
74 |
- Datasets 2.3.2
|
75 |
- Tokenizers 0.12.1
|