annaferrari02's picture
upload files for model
7b4617a verified
"""
Training script for surgical instrument classification
"""
import os
import pickle
import cv2
import pandas as pd
import numpy as np
from utils.utils import extract_features_from_image, fit_pca_transformer, train_svm_model, augment_image
from utils.utils import extract_features_from_image, fit_pca_transformer, augment_image
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report
def train_and_save_model(base_path, images_folder, gt_csv, save_dir, n_components=100):
"""
Complete training pipeline that saves everything needed for submission
Args:
base_path: Base directory path
images_folder: Folder name containing images
gt_csv: Ground truth CSV filename
save_dir: Directory to save model artifacts
n_components: Number of PCA components
"""
print("="*80)
print("TRAINING SURGICAL INSTRUMENT CLASSIFIER")
print("="*80)
# Setup paths
PATH_TO_GT = os.path.join(base_path, gt_csv)
PATH_TO_IMAGES = os.path.join(base_path, images_folder)
print(f"\nConfiguration:")
print(f" Ground Truth: {PATH_TO_GT}")
print(f" Images: {PATH_TO_IMAGES}")
print(f" PCA Components: {n_components}")
print(f" Save directory: {save_dir}")
# Load ground truth
df = pd.read_csv(PATH_TO_GT)
print(f"\nLoaded {len(df)} training samples")
print(f"\nLabel distribution:")
print(df['category_id'].value_counts().sort_index())
# Extract features
print(f"\n{'='*80}")
print("STEP 1: FEATURE EXTRACTION WITH AUGMENTATION")
print("="*80)
# Augmentation configuration
AUGMENTATIONS_PER_IMAGE = 2 # Conservative: 3x total dataset
print(f"\nAugmentation settings:")
print(f" Augmentations per image: {AUGMENTATIONS_PER_IMAGE}")
print(f" Rotation range: -10° to +10°")
print(f" Brightness range: 0.9 to 1.1")
print(f" Horizontal flip: Yes")
print(f" Gaussian noise: σ=3")
print(f" Expected total samples: {len(df) * (1 + AUGMENTATIONS_PER_IMAGE)}")
features = []
labels = []
for i in range(len(df)):
if i % 500 == 0:
print(f" Processing {i}/{len(df)* (1 + AUGMENTATIONS_PER_IMAGE)}...")
image_name = df.iloc[i]["file_name"]
label = df.iloc[i]["category_id"]
path_to_image = os.path.join(PATH_TO_IMAGES, image_name)
try:
image = cv2.imread(path_to_image)
if image is None:
print(f" Warning: Could not read {image_name}, skipping...")
continue
# ORIGINAL IMAGE
original_features = extract_features_from_image(image)
features.append(original_features)
labels.append(label)
# AUGMENTED VERSIONS
for aug_idx in range(AUGMENTATIONS_PER_IMAGE):
# Generate augmented image
aug_image = augment_image(
image,
rotation_range=(-10, 10),
brightness_range=(0.9, 1.1),
add_noise=True,
noise_sigma=3,
horizontal_flip=(aug_idx == 0) # Only flip on first augmentation
)
# Extract features from augmented image
aug_features = extract_features_from_image(aug_image)
features.append(aug_features)
labels.append(label)
except Exception as e:
print(f" Error processing {image_name}: {e}")
continue
features_array = np.array(features)
labels_array = np.array(labels)
print(f"\nFeature extraction complete!")
print(f" Original samples: {len(df)}")
print(f" Total samples (with augmentation): {len(features)}")
print(f" Features shape: {features_array.shape}")
print(f" Labels shape: {labels_array.shape}")
print(f" Feature dimension: {features_array.shape[1]}")
# Apply PCA
print(f"\n{'='*80}")
print("STEP 2: DIMENSIONALITY REDUCTION (PCA)")
print("="*80)
pca_params, features_reduced = fit_pca_transformer(features_array, n_components)
print(f" Reduced from {features_array.shape[1]} to {n_components} dimensions")
print(f" Explained variance: {pca_params['cumulative_variance'][-1]:.4f}")
# Train SVM with Grid Search
print(f"\n{'='*80}")
print("STEP 3: TRAINING SVM CLASSIFIER WITH GRID SEARCH")
print("="*80)
# Split data for training and testing
X_train, X_test, y_train, y_test = train_test_split(
features_reduced,
labels_array,
test_size=0.2,
random_state=42,
stratify=labels_array
)
print(f"\nData split:")
print(f" Training samples: {len(X_train)}")
print(f" Test samples: {len(X_test)}")
# Define parameter grid
param_grid = {
'C': [1, 10, 50, 100],
'gamma': ['scale', 0.001, 0.01, 0.1],
'kernel': ['rbf']
}
print(f"\nGrid Search parameters:")
print(f" C values: {param_grid['C']}")
print(f" Gamma values: {param_grid['gamma']}")
print(f" Kernel: {param_grid['kernel']}")
print(f" Total combinations: {len(param_grid['C']) * len(param_grid['gamma'])}")
print(f" Cross-validation folds: 3")
print(f"\nThis will take 15-30 minutes...")
# Perform Grid Search
grid_search = GridSearchCV(
SVC(),
param_grid,
cv=3,
scoring='f1_macro',
n_jobs=-1,
verbose=2
)
print("\nStarting Grid Search...")
grid_search.fit(X_train, y_train)
# Get best model
svm_model = grid_search.best_estimator_
print(f"\n{'='*80}")
print("GRID SEARCH COMPLETE!")
print("="*80)
print(f"\nBest parameters found:")
print(f" C: {grid_search.best_params_['C']}")
print(f" Gamma: {grid_search.best_params_['gamma']}")
print(f" Kernel: {grid_search.best_params_['kernel']}")
print(f"\nBest cross-validation F1-score: {grid_search.best_score_:.4f}")
# Train final model and evaluate
print(f"\n{'='*80}")
print("FINAL MODEL EVALUATION")
print("="*80)
# Training set performance
y_train_pred = svm_model.predict(X_train)
train_accuracy = accuracy_score(y_train, y_train_pred)
train_f1 = f1_score(y_train, y_train_pred, average='macro')
train_precision = precision_score(y_train, y_train_pred, average='macro')
train_recall = recall_score(y_train, y_train_pred, average='macro')
# Test set performance
y_test_pred = svm_model.predict(X_test)
test_accuracy = accuracy_score(y_test, y_test_pred)
test_f1 = f1_score(y_test, y_test_pred, average='macro')
test_precision = precision_score(y_test, y_test_pred, average='macro')
test_recall = recall_score(y_test, y_test_pred, average='macro')
print(f"\nTraining Set Performance:")
print(f" Accuracy: {train_accuracy:.4f}")
print(f" Precision: {train_precision:.4f}")
print(f" Recall: {train_recall:.4f}")
print(f" F1-score: {train_f1:.4f}")
print(f"\nTest Set Performance:")
print(f" Accuracy: {test_accuracy:.4f}")
print(f" Precision: {test_precision:.4f}")
print(f" Recall: {test_recall:.4f}")
print(f" F1-score: {test_f1:.4f}")
print(f"\nDetailed Classification Report:")
print(classification_report(y_test, y_test_pred,
target_names=[f'Class {i}' for i in sorted(np.unique(labels_array))]))
print(f"\nModel Details:")
print(f" Support vectors: {len(svm_model.support_)}")
print(f" Support vectors per class: {svm_model.n_support_}")
# Save SVM model
model_path = os.path.join(save_dir, "multiclass_model.pkl")
with open(model_path, "wb") as f:
pickle.dump(svm_model, f)
print(f" ✓ Saved SVM model: {model_path}")
# Save PCA parameters
pca_path = os.path.join(save_dir, "pca_params.pkl")
with open(pca_path, "wb") as f:
pickle.dump(pca_params, f)
print(f" ✓ Saved PCA params: {pca_path}")
print(f"\n{'='*80}")
print("TRAINING COMPLETE!")
print("="*80)
print(f"\nFinal Optimized Results:")
print(f" Best Parameters: C={grid_search.best_params_['C']}, gamma={grid_search.best_params_['gamma']}")
print(f" CV F1-score: {grid_search.best_score_:.4f}")
print(f" Test F1-score: {test_f1:.4f}")
print(f" Test Precision: {test_precision:.4f}")
print(f" Test Recall: {test_recall:.4f}")
print(f"\nFiles saved to: {save_dir}")
print(f"\nNext steps:")
print(f" 1. Create a 'utils' folder in your HuggingFace repository")
print(f" 2. Copy utils.py into the 'utils' folder")
print(f" 3. Copy script.py, multiclass_model.pkl, and pca_params.pkl to the repository root")
print(f" 4. Create an empty __init__.py file in the 'utils' folder")
print(f" 5. Submit to competition!")
if __name__ == "__main__":
BASE_PATH = "C:/Users/anna2/ISM/ANNA/phase1a-data-augmentation"
IMAGES_FOLDER = "C:/Users/anna2/ISM/Images"
GT_CSV = "C:/Users/anna2/ISM/Baselines/phase_1a/gt_for_classification_multiclass_from_filenames_0_index.csv"
SAVE_DIR = "C:/Users/anna2/ISM/ANNA/phase1a-data-augmentation"
# Number of PCA components
N_COMPONENTS = 250 #can be adjusted
# Train and save
train_and_save_model(BASE_PATH, IMAGES_FOLDER, GT_CSV, SAVE_DIR, N_COMPONENTS)