|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch |
|
from safetensors.torch import load_file |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection |
|
|
|
|
|
class AniMemoryAltCLip(torch.nn.Module): |
|
def __init__(self, config: CLIPTextConfig): |
|
super().__init__() |
|
self.model_hf = CLIPTextModelWithProjection(config) |
|
self.linear_proj = torch.nn.Linear(in_features=1280, out_features=1280) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path, |
|
subfolder="", |
|
linear_proj_name="weights.safetensors", |
|
torch_dtype=torch.float16, |
|
): |
|
cls.dtype = torch_dtype |
|
config = CLIPTextModelWithProjection.config_class.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder |
|
) |
|
model = cls(config=config) |
|
model.model_hf = CLIPTextModelWithProjection.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder |
|
) |
|
linear_proj_state = load_file( |
|
os.path.join(pretrained_model_name_or_path, subfolder, linear_proj_name) |
|
) |
|
model.linear_proj.load_state_dict(linear_proj_state) |
|
return model |
|
|
|
def to(self, *args, **kwargs): |
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to( |
|
*args, **kwargs |
|
) |
|
super(AniMemoryAltCLip, self).to(*args, **kwargs) |
|
self.dtype = dtype if dtype is not None else self.dtype |
|
self.device = device if device is not None else self.device |
|
return self |
|
|
|
def expand_mask(self, mask=None, dtype="", tgt_len=None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = ( |
|
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min |
|
) |
|
|
|
def make_attn_mask(self, attn_mask): |
|
seq_len = attn_mask.shape[1] |
|
query = attn_mask.unsqueeze(1).float() |
|
attn_mask = ( |
|
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1]) |
|
) |
|
attn_mask = attn_mask.view([-1, seq_len, seq_len]) |
|
return attn_mask |
|
|
|
def gradient_checkpointing_enable( |
|
self, |
|
): |
|
self.model_hf.gradient_checkpointing_enable() |
|
|
|
def forward(self, text, attention_mask): |
|
hidden_states = self.model_hf.text_model.embeddings( |
|
input_ids=text, position_ids=None |
|
) |
|
if attention_mask is None: |
|
print("Warning: attention_mask is None in altclip!") |
|
new_attn_mask = ( |
|
self.expand_mask(attention_mask, hidden_states.dtype) |
|
if attention_mask is not None |
|
else None |
|
) |
|
encoder_outputs = self.model_hf.text_model.encoder( |
|
inputs_embeds=hidden_states, |
|
attention_mask=new_attn_mask, |
|
causal_attention_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
) |
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.model_hf.text_model.final_layer_norm(last_hidden_state) |
|
last_hidden_state = ( |
|
last_hidden_state[torch.arange(last_hidden_state.shape[0]), 0] |
|
@ self.model_hf.text_projection.weight |
|
) |
|
pooled_output = self.linear_proj(last_hidden_state) |
|
|
|
extra_features = encoder_outputs.hidden_states[-2] |
|
extra_features = self.model_hf.text_model.final_layer_norm(extra_features) |
|
return extra_features, pooled_output |
|
|