anilguven commited on
Commit
2c8dc0e
1 Parent(s): 7dded52

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -16,4 +16,53 @@ tags:
16
  - tweet
17
  - emotion
18
  - sentiment
19
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  - tweet
17
  - emotion
18
  - sentiment
19
+ ---
20
+ ### Model Info
21
+
22
+ This model was developed/finetuned for tweet emotion detection task for the Turkish Language. This model was finetuned via tweet dataset. This dataset contains 5 classes: angry, happy, sad, surprised and afraid.
23
+ - LABEL_0: angry
24
+ - LABEL_1: afraid
25
+ - LABEL_2: happy
26
+ - LABEL_3: surprised
27
+ - LABEL_4: sad
28
+
29
+ ### Model Sources
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Dataset:** https://huggingface.co/datasets/anilguven/turkish_tweet_emotion_dataset
34
+ - **Paper:** https://ieeexplore.ieee.org/document/9559014
35
+ - **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_tweet_emotion_analysis_with_language_models
36
+ - **Finetuned from model [optional]:** https://huggingface.co/bert-base-multilingual-uncased
37
+
38
+ #### Preprocessing
39
+
40
+ You must apply removing stopwords, stemming, or lemmatization process for Turkish.
41
+
42
+ ### Results
43
+
44
+ - eval_loss = 0.5407382257189601
45
+ - mcc = 0.7682691555667568
46
+ - Accuracy: %81.37
47
+
48
+ ## Citation
49
+
50
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
51
+
52
+ **BibTeX:**
53
+
54
+ *@INPROCEEDINGS{9559014,
55
+ author={Guven, Zekeriya Anil},
56
+ booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)},
57
+ title={Comparison of BERT Models and Machine Learning Methods for Sentiment Analysis on Turkish Tweets},
58
+ year={2021},
59
+ volume={},
60
+ number={},
61
+ pages={98-101},
62
+ keywords={Computer science;Sentiment analysis;Analytical models;Social networking (online);Computational modeling;Bit error rate;Random forests;Sentiment Analysis;BERT;Machine Learning;Text Classification;Tweet Analysis.},
63
+ doi={10.1109/UBMK52708.2021.9559014}}*
64
+
65
+
66
+ **APA:**
67
+
68
+ *Guven, Z. A. (2021, September). Comparison of BERT models and machine learning methods for sentiment analysis on Turkish tweets. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 98-101). IEEE.*