|
import pickle |
|
import tensorflow as tf |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
|
|
MAX_LENGTH = 40 |
|
|
|
BATCH_SIZE = 32 |
|
BUFFER_SIZE = 1000 |
|
EMBEDDING_DIM = 512 |
|
UNITS = 512 |
|
|
|
|
|
|
|
vocab = pickle.load(open('saved_vocabulary/vocab_coco.file', 'rb')) |
|
|
|
tokenizer = tf.keras.layers.TextVectorization( |
|
|
|
standardize=None, |
|
output_sequence_length=MAX_LENGTH, |
|
vocabulary=vocab |
|
) |
|
|
|
idx2word = tf.keras.layers.StringLookup( |
|
mask_token="", |
|
vocabulary=tokenizer.get_vocabulary(), |
|
invert=True |
|
) |
|
|
|
|
|
|
|
def CNN_Encoder(): |
|
inception_v3 = tf.keras.applications.InceptionV3( |
|
include_top=False, |
|
weights='imagenet' |
|
) |
|
|
|
output = inception_v3.output |
|
output = tf.keras.layers.Reshape( |
|
(-1, output.shape[-1]))(output) |
|
|
|
cnn_model = tf.keras.models.Model(inception_v3.input, output) |
|
return cnn_model |
|
|
|
|
|
class TransformerEncoderLayer(tf.keras.layers.Layer): |
|
|
|
def __init__(self, embed_dim, num_heads): |
|
super().__init__() |
|
self.layer_norm_1 = tf.keras.layers.LayerNormalization() |
|
self.layer_norm_2 = tf.keras.layers.LayerNormalization() |
|
self.attention = tf.keras.layers.MultiHeadAttention( |
|
num_heads=num_heads, key_dim=embed_dim) |
|
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu") |
|
|
|
|
|
def call(self, x, training): |
|
x = self.layer_norm_1(x) |
|
x = self.dense(x) |
|
|
|
attn_output = self.attention( |
|
query=x, |
|
value=x, |
|
key=x, |
|
attention_mask=None, |
|
training=training |
|
) |
|
|
|
x = self.layer_norm_2(x + attn_output) |
|
return x |
|
|
|
|
|
class Embeddings(tf.keras.layers.Layer): |
|
|
|
def __init__(self, vocab_size, embed_dim, max_len): |
|
super().__init__() |
|
self.token_embeddings = tf.keras.layers.Embedding( |
|
vocab_size, embed_dim) |
|
self.position_embeddings = tf.keras.layers.Embedding( |
|
max_len, embed_dim, input_shape=(None, max_len)) |
|
|
|
|
|
def call(self, input_ids): |
|
length = tf.shape(input_ids)[-1] |
|
position_ids = tf.range(start=0, limit=length, delta=1) |
|
position_ids = tf.expand_dims(position_ids, axis=0) |
|
|
|
token_embeddings = self.token_embeddings(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
return token_embeddings + position_embeddings |
|
|
|
|
|
class TransformerDecoderLayer(tf.keras.layers.Layer): |
|
|
|
def __init__(self, embed_dim, units, num_heads): |
|
super().__init__() |
|
self.embedding = Embeddings( |
|
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH) |
|
|
|
self.attention_1 = tf.keras.layers.MultiHeadAttention( |
|
num_heads=num_heads, key_dim=embed_dim, dropout=0.1 |
|
) |
|
self.attention_2 = tf.keras.layers.MultiHeadAttention( |
|
num_heads=num_heads, key_dim=embed_dim, dropout=0.1 |
|
) |
|
|
|
self.layernorm_1 = tf.keras.layers.LayerNormalization() |
|
self.layernorm_2 = tf.keras.layers.LayerNormalization() |
|
self.layernorm_3 = tf.keras.layers.LayerNormalization() |
|
|
|
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu") |
|
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim) |
|
|
|
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax") |
|
|
|
self.dropout_1 = tf.keras.layers.Dropout(0.3) |
|
self.dropout_2 = tf.keras.layers.Dropout(0.5) |
|
|
|
|
|
def call(self, input_ids, encoder_output, training, mask=None): |
|
embeddings = self.embedding(input_ids) |
|
|
|
combined_mask = None |
|
padding_mask = None |
|
|
|
if mask is not None: |
|
causal_mask = self.get_causal_attention_mask(embeddings) |
|
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32) |
|
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32) |
|
combined_mask = tf.minimum(combined_mask, causal_mask) |
|
|
|
attn_output_1 = self.attention_1( |
|
query=embeddings, |
|
value=embeddings, |
|
key=embeddings, |
|
attention_mask=combined_mask, |
|
training=training |
|
) |
|
|
|
out_1 = self.layernorm_1(embeddings + attn_output_1) |
|
|
|
attn_output_2 = self.attention_2( |
|
query=out_1, |
|
value=encoder_output, |
|
key=encoder_output, |
|
attention_mask=padding_mask, |
|
training=training |
|
) |
|
|
|
out_2 = self.layernorm_2(out_1 + attn_output_2) |
|
|
|
ffn_out = self.ffn_layer_1(out_2) |
|
ffn_out = self.dropout_1(ffn_out, training=training) |
|
ffn_out = self.ffn_layer_2(ffn_out) |
|
|
|
ffn_out = self.layernorm_3(ffn_out + out_2) |
|
ffn_out = self.dropout_2(ffn_out, training=training) |
|
preds = self.out(ffn_out) |
|
return preds |
|
|
|
|
|
def get_causal_attention_mask(self, inputs): |
|
input_shape = tf.shape(inputs) |
|
batch_size, sequence_length = input_shape[0], input_shape[1] |
|
i = tf.range(sequence_length)[:, tf.newaxis] |
|
j = tf.range(sequence_length) |
|
mask = tf.cast(i >= j, dtype="int32") |
|
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) |
|
mult = tf.concat( |
|
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], |
|
axis=0 |
|
) |
|
return tf.tile(mask, mult) |
|
|
|
|
|
class ImageCaptioningModel(tf.keras.Model): |
|
|
|
def __init__(self, cnn_model, encoder, decoder, image_aug=None): |
|
super().__init__() |
|
self.cnn_model = cnn_model |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.image_aug = image_aug |
|
self.loss_tracker = tf.keras.metrics.Mean(name="loss") |
|
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy") |
|
|
|
|
|
def calculate_loss(self, y_true, y_pred, mask): |
|
loss = self.loss(y_true, y_pred) |
|
mask = tf.cast(mask, dtype=loss.dtype) |
|
loss *= mask |
|
return tf.reduce_sum(loss) / tf.reduce_sum(mask) |
|
|
|
|
|
def calculate_accuracy(self, y_true, y_pred, mask): |
|
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2)) |
|
accuracy = tf.math.logical_and(mask, accuracy) |
|
accuracy = tf.cast(accuracy, dtype=tf.float32) |
|
mask = tf.cast(mask, dtype=tf.float32) |
|
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask) |
|
|
|
|
|
def compute_loss_and_acc(self, img_embed, captions, training=True): |
|
encoder_output = self.encoder(img_embed, training=True) |
|
y_input = captions[:, :-1] |
|
y_true = captions[:, 1:] |
|
mask = (y_true != 0) |
|
y_pred = self.decoder( |
|
y_input, encoder_output, training=True, mask=mask |
|
) |
|
loss = self.calculate_loss(y_true, y_pred, mask) |
|
acc = self.calculate_accuracy(y_true, y_pred, mask) |
|
return loss, acc |
|
|
|
|
|
def train_step(self, batch): |
|
imgs, captions = batch |
|
|
|
if self.image_aug: |
|
imgs = self.image_aug(imgs) |
|
|
|
img_embed = self.cnn_model(imgs) |
|
|
|
with tf.GradientTape() as tape: |
|
loss, acc = self.compute_loss_and_acc( |
|
img_embed, captions |
|
) |
|
|
|
train_vars = ( |
|
self.encoder.trainable_variables + self.decoder.trainable_variables |
|
) |
|
grads = tape.gradient(loss, train_vars) |
|
self.optimizer.apply_gradients(zip(grads, train_vars)) |
|
self.loss_tracker.update_state(loss) |
|
self.acc_tracker.update_state(acc) |
|
|
|
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()} |
|
|
|
|
|
def test_step(self, batch): |
|
imgs, captions = batch |
|
|
|
img_embed = self.cnn_model(imgs) |
|
|
|
loss, acc = self.compute_loss_and_acc( |
|
img_embed, captions, training=False |
|
) |
|
|
|
self.loss_tracker.update_state(loss) |
|
self.acc_tracker.update_state(acc) |
|
|
|
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()} |
|
|
|
@property |
|
def metrics(self): |
|
return [self.loss_tracker, self.acc_tracker] |
|
|
|
|
|
def load_image_from_path(img_path): |
|
img = tf.io.read_file(img_path) |
|
img = tf.io.decode_jpeg(img, channels=3) |
|
img = tf.keras.layers.Resizing(299, 299)(img) |
|
img = tf.keras.applications.inception_v3.preprocess_input(img) |
|
return img |
|
|
|
|
|
def generate_caption(img, caption_model, add_noise=False): |
|
if isinstance(img, str): |
|
img = load_image_from_path(img) |
|
|
|
if add_noise == True: |
|
noise = tf.random.normal(img.shape)*0.1 |
|
img = (img + noise) |
|
img = (img - tf.reduce_min(img))/(tf.reduce_max(img) - tf.reduce_min(img)) |
|
|
|
img = tf.expand_dims(img, axis=0) |
|
img_embed = caption_model.cnn_model(img) |
|
img_encoded = caption_model.encoder(img_embed, training=False) |
|
|
|
y_inp = '[start]' |
|
for i in range(MAX_LENGTH-1): |
|
tokenized = tokenizer([y_inp])[:, :-1] |
|
mask = tf.cast(tokenized != 0, tf.int32) |
|
pred = caption_model.decoder( |
|
tokenized, img_encoded, training=False, mask=mask) |
|
|
|
pred_idx = np.argmax(pred[0, i, :]) |
|
pred_word = idx2word(pred_idx).numpy().decode('utf-8') |
|
if pred_word == '[end]': |
|
break |
|
|
|
y_inp += ' ' + pred_word |
|
|
|
y_inp = y_inp.replace('[start] ', '') |
|
return y_inp |
|
|
|
|
|
def get_caption_model(): |
|
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1) |
|
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8) |
|
|
|
cnn_model = CNN_Encoder() |
|
|
|
caption_model = ImageCaptioningModel( |
|
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None, |
|
) |
|
|
|
def call_fn(batch, training): |
|
return batch |
|
|
|
caption_model.call = call_fn |
|
sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40)) |
|
|
|
caption_model((sample_x, sample_y)) |
|
|
|
sample_img_embed = caption_model.cnn_model(sample_x) |
|
sample_enc_out = caption_model.encoder(sample_img_embed, training=False) |
|
caption_model.decoder(sample_y, sample_enc_out, training=False) |
|
|
|
try: |
|
caption_model.load_weights('saved_models/image_captioning_coco_weights.h5') |
|
except FileNotFoundError: |
|
caption_model.load_weights('Image-Captioning/saved_models/image_captioning_coco_weights.h5') |
|
|
|
return caption_model |
|
|