{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c71fab2cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c71fab2cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c71fab2cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c71fab2ce50>", "_build": "<function ActorCriticPolicy._build at 0x7c71fab2cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7c71fab2cf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c71fab2d000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c71fab2d090>", "_predict": "<function ActorCriticPolicy._predict at 0x7c71fab2d120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c71fab2d1b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c71fab2d240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c71fab2d2d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c71faac4200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725401718860238824, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZAG70UEom6wiQiuO1tA7NPjic7kqw8NwAAgD8AAIA/kCVivtsrUT8S7uq9NqIRvzekZr5qkXO8AAAAAAAAAAAAOAY8NpIBvHWEKLygcqs8tYhVPVWPkL0AAIA/AACAPzPebj10PIQ99lY0PSxaIb4Cjgs9K1PdPAAAAAAAAAAAAFTcvA+LRLw4LNm6hQyVPNJWrj2L9XO9AACAPwAAgD/Ne6q9j0YkuitDyLmLmOu1DzbZOoZc6jgAAAAAAACAP5pPoLwVa4o+yXOovoQQab4bMlS+bLpMvQAAAAAAAAAAOrxVvo87dT6yIp4+rwKQvp6ngbk7pdk9AAAAAAAAAACa/bM8D/xLvA7Bg7y0nyM9AUOyPW/TAb4AAIA/AACAP5r3MTzs7MO7REE2PCKURTw/exw9mkMpvQAAgD8AAIA/ZsbsvFpbuz9oGn2+T9CkPRgo3byy1M+9AAAAAAAAAAAmxEK+KXeRPuQ6AD7cIaG+iQi8vYuJED4AAAAAAAAAAMBTFr78RDg/jA6mvX5z6b51GiG+FfpiPQAAAAAAAAAAmhVEvReeYz8esem8WegPvzgb0r1NnRS9AAAAAAAAAACArQc96e6zP65EJT9cP8q9ZU6PvHsJUDwAAAAAAAAAAIAECb2Akzg/ZYlPvSTT5b5LLDO9XeYPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEzjR2KVIKMAWyUTSwBjAF0lEdAlpaJXp4bCXV9lChoBkdAbV868QI2O2gHTQUBaAhHQJaXq2KEWZZ1fZQoaAZHQG7GCr92ovVoB0v1aAhHQJaXwtz0Yj11fZQoaAZHQHKesk2P1ctoB00FAWgIR0CWmCaxX4j9dX2UKGgGR0ByKhaA4GUwaAdNAwFoCEdAlphjR2KVIXV9lChoBkdAcRtlY2bXpWgHTRoBaAhHQJaYw4n4O+Z1fZQoaAZHQHHR6qCHymRoB01UAWgIR0CWmS3xFy7xdX2UKGgGR0BwySdnTRYzaAdNIwFoCEdAlplP73wkPnV9lChoBkdAcXjGIKtxMmgHTX0BaAhHQJaZqjxkNF11fZQoaAZHQHKUmLHdXT5oB00wAWgIR0CWm5kgwGnodX2UKGgGR0ByYpfPX05EaAdNAgFoCEdAlpuya7VawHV9lChoBkdAcCwkMkQf62gHTT4BaAhHQJacdhTfixV1fZQoaAZHQHEuX2ZiNKhoB00pAWgIR0CWnc5p8F6idX2UKGgGR0Bx5wfQrtmdaAdNTQFoCEdAlp/88gZCOXV9lChoBkdAcO7U96kZaWgHS+loCEdAlqApkf9xZXV9lChoBkdAcFUbnHNorWgHTTwBaAhHQJagmDIzWPN1fZQoaAZHQHCRgg9vCMxoB00EAWgIR0CWoPDAaef7dX2UKGgGR0BwHSgJ1JUYaAdNGwFoCEdAlqEwvlEJB3V9lChoBkdAcRE+y7f512gHTQEBaAhHQJailgZ0jkd1fZQoaAZHQHI5bIHTqjdoB00RAWgIR0CWows052hadX2UKGgGR0BxX+jmCAc1aAdNcwFoCEdAlqT1WGRFJHV9lChoBkdAb+itMfzSTmgHS/VoCEdAlqXqufVZtHV9lChoBkdAcDCC2c8Tz2gHTRwBaAhHQJanpeE7GNt1fZQoaAZHQGZpb2+PBBRoB03oA2gIR0CWp+DhLoOhdX2UKGgGR0BwnmbutwJgaAdNBgFoCEdAlqjY9Pk7wXV9lChoBkdAcUZMwUQCjmgHTZMBaAhHQJapNZEDyOJ1fZQoaAZHQHLGabz9S/FoB0vlaAhHQJapc3PzFuN1fZQoaAZHQG2/Pppvgm9oB0voaAhHQJap1Pl+3H91fZQoaAZHQG4lhWHUMG5oB0v3aAhHQJap3dbgTAZ1fZQoaAZHQHDhtGiHqNZoB03eAWgIR0CWqk0Dlo12dX2UKGgGR0BxtgyM1jy4aAdNMgJoCEdAlqpm5H3DenV9lChoBkdAcSaIRywOfGgHTR8BaAhHQJarq0JF9a51fZQoaAZHQHAMf2Xb/OtoB00GAWgIR0CWq++3pfQbdX2UKGgGR0BuYgZ88cMmaAdNNAFoCEdAlqwQsGxD9nV9lChoBkdAba1S0BwMpmgHTSMBaAhHQJauMB3iaRZ1fZQoaAZHQEz4sgdOqNpoB0uwaAhHQJaujA0sOG11fZQoaAZHQHIl6WHDaXdoB01DAWgIR0CWr9bsF+uvdX2UKGgGR0BvvGnCO3lTaAdL+mgIR0CWsCK+zt1IdX2UKGgGR0BywZtYSxqxaAdNJwFoCEdAlrBHiBGx2XV9lChoBkdAchhaz/p+t2gHS/poCEdAlrC8xKxs23V9lChoBkdAcVIHp8neBWgHTT8BaAhHQJawxMRHww11fZQoaAZHQHKdcZpBX0ZoB00IAWgIR0CWwiqKP4mDdX2UKGgGR0Bwmt3LV4HHaAdNBgFoCEdAlsI4R/ViF3V9lChoBkdAcTh0Gu9vj2gHTV4BaAhHQJbDxImPYFt1fZQoaAZHQHEN0FOfukVoB00WAWgIR0CWxBa1Cw8odX2UKGgGR0Bxz/x6OYICaAdNEgFoCEdAlsRmyxA0K3V9lChoBkdAcMLQwK0D2mgHTTMBaAhHQJbFNCUornV1fZQoaAZHQHI27GrCFbpoB02zAWgIR0CWxaRm9QGfdX2UKGgGR0BuB5m/WUbDaAdNCwFoCEdAlsZ3Ty8SPHV9lChoBkdAb/rpudf9gmgHTQEBaAhHQJbHzLRrrPd1fZQoaAZHQHKJn0K7ZnNoB001AWgIR0CWyCPHktEodX2UKGgGR0BxF6YnfEXMaAdL7WgIR0CWyCq3VkMDdX2UKGgGR0BxGsJzDGcXaAdL/2gIR0CWyDqYZ2pydX2UKGgGR0BwSa2lVLi/aAdNCgFoCEdAlshtVrAP/nV9lChoBkdAbmbmOlwcYWgHS/RoCEdAlshr2criEXV9lChoBkdAcpCsgdOqN2gHTQYBaAhHQJbJsUJv5xl1fZQoaAZHQG6RVstTUAloB00wAWgIR0CWytP3BYV7dX2UKGgGR0BxaDbUPQOXaAdL/WgIR0CWy5WsijcmdX2UKGgGR0BwD59RaX8gaAdNFwFoCEdAlsu1Ql8gIXV9lChoBkdAcb0aLGaQWGgHTSABaAhHQJbMRTgl4Tt1fZQoaAZHQHBArbL2YfJoB00JAWgIR0CWzUJEYwZgdX2UKGgGR0Bw5uqwQlKLaAdNHgFoCEdAls1rwazeGnV9lChoBkdAZg0tU4rBkGgHTegDaAhHQJbNdrEcbR51fZQoaAZHQHJtILThHb1oB00BAWgIR0CWzeO+IuXedX2UKGgGR0Bvi836yjYaaAdL+WgIR0CWz3p6hQFcdX2UKGgGR0ByJrXqZ+hHaAdNBgFoCEdAls+m69TP0XV9lChoBkdAclEK8+Roy2gHTQsBaAhHQJbQTteD3/R1fZQoaAZHQHCjiBTXJ5poB00hAWgIR0CW0P7YTTOPdX2UKGgGR0BxWYWAPNFCaAdL62gIR0CW0RNFz+3pdX2UKGgGR0BvAp3iaRZEaAdNJgFoCEdAltEcFINEw3V9lChoBkdAc29TmW+oL2gHTTgBaAhHQJbRXMzMzM11fZQoaAZHQHMJWkadc0NoB0vsaAhHQJbScFJQLux1fZQoaAZHQGGkf9P1tfpoB03oA2gIR0CW0rCoCMgmdX2UKGgGR0AlvTI/7iyZaAdL3WgIR0CW0voqCpWFdX2UKGgGR0BzVpg9eQdTaAdNBAFoCEdAltQZ7HAAQ3V9lChoBkdAcv5ROUMXrWgHS+loCEdAltVgdwNsnHV9lChoBkdAcK3sLfDUE2gHS/xoCEdAltXqGHpKSXV9lChoBkdAcKcY8dPtUmgHS/loCEdAltYGdRR/E3V9lChoBkdATsPiBGx2S2gHS7JoCEdAltYiQxN7B3V9lChoBkdAcDpMr3CbdGgHS/poCEdAltac7+1jRXV9lChoBkdAbWeS+xnnMmgHTTkBaAhHQJbW9WHUMG51fZQoaAZHQHEkN/rjYI1oB0vjaAhHQJbZVsguAZt1fZQoaAZHQHKlQgxJul5oB00PAWgIR0CW2VYixFAndX2UKGgGR0Bw9mv+wTufaAdNBQFoCEdAltmdpM6BAnV9lChoBkdAbfpJkGzKLmgHS/9oCEdAltoJ+2E0znV9lChoBkdAcWCICU5dW2gHTQgBaAhHQJbaUWbgCOp1fZQoaAZHQHCQwiFCb+doB00RAWgIR0CW2ox20Re1dX2UKGgGR0BwH/eVLSNPaAdL42gIR0CW2vglWwNcdX2UKGgGR0Byj4TVUdaMaAdNAAFoCEdAltubyUcGT3V9lChoBkdAbk3jU/fO2WgHS95oCEdAltv1J17pmnV9lChoBkdAcZEMBZIQOGgHTR8BaAhHQJbcZO0svqV1fZQoaAZHQHD+QqZtvXNoB0vqaAhHQJbdl//echF1fZQoaAZHQHB8sqOLiuNoB0v1aAhHQJbeDSSeRPp1fZQoaAZHQHDLPLTx5LRoB0v1aAhHQJbeZ7laKUF1fZQoaAZHQG7nQJw84gloB00kAWgIR0CW3sjyWiUQdX2UKGgGR0Bwwj/ZM+NcaAdNGQFoCEdAlt70ZFXq7nV9lChoBkdAbibIAfdRBWgHTRUBaAhHQJbfeQbMott1fZQoaAZHQG+40fozN2VoB0vbaAhHQJbfqNlyzX11fZQoaAZHQG2CT67/XGxoB0viaAhHQJbgkEFGG211fZQoaAZHQG5WTs6aLGdoB0vwaAhHQJbgv6l+Eyt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |