andzhang01's picture
Upload 27 files
a662214
# from AUTOMATC1111
# maybe modified by Nyanko Lepsoni
# modified by crosstyan
import os.path
import re
import tempfile
import argparse
import glob
import zipfile
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
from basicsr.utils.download_util import load_file_from_url
from PIL import Image
from tqdm import tqdm
re_special = re.compile(r"([\\()])")
def get_deepbooru_tags_model(model_path: str):
if not os.path.exists(os.path.join(model_path, "project.json")):
is_abs = os.path.isabs(model_path)
if not is_abs:
model_path = os.path.abspath(model_path)
load_file_from_url(
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
model_path,
)
with zipfile.ZipFile(
os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r"
) as zip_ref:
zip_ref.extractall(model_path)
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
tags = dd.project.load_tags_from_project(model_path)
model = dd.project.load_model_from_project(model_path, compile_model=False)
return model, tags
def get_deepbooru_tags_from_model(
model,
tags,
pil_image,
threshold,
alpha_sort=False,
use_spaces=True,
use_escape=True,
include_ranks=False,
):
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
image = tf.image.resize(
image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True,
)
image = image.numpy() # EagerTensor to np.array
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
image_shape = image.shape
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
y = model.predict(image)[0]
result_dict = {}
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
unsorted_tags_in_theshold = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
unsorted_tags_in_theshold.append((result_dict[tag], tag))
result_tags_print.append(f"{result_dict[tag]} {tag}")
# sort tags
result_tags_out = []
sort_ndx = 0
if alpha_sort:
sort_ndx = 1
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace("_", " ")
if use_escape:
tag_outformat = re.sub(re_special, r"\\\1", tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{weight:.3f})"
result_tags_out.append(tag_outformat)
# print("\n".join(sorted(result_tags_print, reverse=True)))
return ", ".join(result_tags_out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path", type=str, default=".")
parser.add_argument("--threshold", type=int, default=0.75)
parser.add_argument("--alpha_sort", type=bool, default=False)
parser.add_argument("--use_spaces", type=bool, default=True)
parser.add_argument("--use_escape", type=bool, default=True)
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--include_ranks", type=bool, default=False)
args = parser.parse_args()
global model_path
model_path:str
if args.model_path == "":
script_path = os.path.realpath(__file__)
default_model_path = os.path.join(os.path.dirname(script_path), "deepdanbooru-models")
# print("No model path specified, using default model path: {}".format(default_model_path))
model_path = default_model_path
else:
model_path = args.model_path
types = ('*.jpg', '*.png', '*.jpeg', '*.gif', '*.webp', '*.bmp')
files_grabbed = []
for files in types:
files_grabbed.extend(glob.glob(os.path.join(args.path, files)))
# print(glob.glob(args.path + files))
model, tags = get_deepbooru_tags_model(model_path)
for image_path in tqdm(files_grabbed, desc="Processing"):
image = Image.open(image_path).convert("RGB")
prompt = get_deepbooru_tags_from_model(
model,
tags,
image,
args.threshold,
alpha_sort=args.alpha_sort,
use_spaces=args.use_spaces,
use_escape=args.use_escape,
include_ranks=args.include_ranks,
)
image_name = os.path.splitext(os.path.basename(image_path))[0]
txt_filename = os.path.join(args.path, f"{image_name}.txt")
# print(f"writing {txt_filename}: {prompt}")
with open(txt_filename, 'w') as f:
f.write(prompt)