|
import os |
|
import gc |
|
import pandas as pd |
|
import numpy as np |
|
|
|
from typing import Tuple, List, Dict |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
from pathlib import Path |
|
from huggingface_hub import hf_hub_download |
|
|
|
from modules import shared |
|
from modules.deepbooru import re_special as tag_escape_pattern |
|
|
|
|
|
from . import dbimutils |
|
|
|
|
|
use_cpu = ('all' in shared.cmd_opts.use_cpu) or ( |
|
'interrogate' in shared.cmd_opts.use_cpu) |
|
|
|
if use_cpu: |
|
tf_device_name = '/cpu:0' |
|
else: |
|
tf_device_name = '/gpu:0' |
|
|
|
if shared.cmd_opts.device_id is not None: |
|
try: |
|
tf_device_name = f'/gpu:{int(shared.cmd_opts.device_id)}' |
|
except ValueError: |
|
print('--device-id is not a integer') |
|
|
|
|
|
class Interrogator: |
|
@staticmethod |
|
def postprocess_tags( |
|
tags: Dict[str, float], |
|
|
|
threshold=0.35, |
|
additional_tags: List[str] = [], |
|
exclude_tags: List[str] = [], |
|
sort_by_alphabetical_order=False, |
|
add_confident_as_weight=False, |
|
replace_underscore=False, |
|
replace_underscore_excludes: List[str] = [], |
|
escape_tag=False |
|
) -> Dict[str, float]: |
|
for t in additional_tags: |
|
tags[t] = 1.0 |
|
|
|
|
|
tags = { |
|
t: c |
|
|
|
|
|
for t, c in sorted( |
|
tags.items(), |
|
key=lambda i: i[0 if sort_by_alphabetical_order else 1], |
|
reverse=not sort_by_alphabetical_order |
|
) |
|
|
|
|
|
if ( |
|
c >= threshold |
|
and t not in exclude_tags |
|
) |
|
} |
|
|
|
new_tags = [] |
|
for tag in list(tags): |
|
new_tag = tag |
|
|
|
if replace_underscore and tag not in replace_underscore_excludes: |
|
new_tag = new_tag.replace('_', ' ') |
|
|
|
if escape_tag: |
|
new_tag = tag_escape_pattern.sub(r'\\\1', new_tag) |
|
|
|
if add_confident_as_weight: |
|
new_tag = f'({new_tag}:{tags[tag]})' |
|
|
|
new_tags.append((new_tag, tags[tag])) |
|
tags = dict(new_tags) |
|
|
|
return tags |
|
|
|
def __init__(self, name: str) -> None: |
|
self.name = name |
|
|
|
def load(self): |
|
raise NotImplementedError() |
|
|
|
def unload(self) -> bool: |
|
unloaded = False |
|
|
|
if hasattr(self, 'model') and self.model is not None: |
|
del self.model |
|
unloaded = True |
|
print(f'Unloaded {self.name}') |
|
|
|
if hasattr(self, 'tags'): |
|
del self.tags |
|
|
|
return unloaded |
|
|
|
def interrogate( |
|
self, |
|
image: Image |
|
) -> Tuple[ |
|
Dict[str, float], |
|
Dict[str, float] |
|
]: |
|
raise NotImplementedError() |
|
|
|
|
|
class DeepDanbooruInterrogator(Interrogator): |
|
def __init__(self, name: str, project_path: os.PathLike) -> None: |
|
super().__init__(name) |
|
self.project_path = project_path |
|
|
|
def load(self) -> None: |
|
print(f'Loading {self.name} from {str(self.project_path)}') |
|
|
|
|
|
|
|
from launch import is_installed, run_pip |
|
if not is_installed('deepdanbooru'): |
|
package = os.environ.get( |
|
'DEEPDANBOORU_PACKAGE', |
|
'git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff' |
|
) |
|
|
|
run_pip( |
|
f'install {package} tensorflow tensorflow-io', 'deepdanbooru') |
|
|
|
import tensorflow as tf |
|
|
|
|
|
|
|
|
|
for device in tf.config.experimental.list_physical_devices('GPU'): |
|
tf.config.experimental.set_memory_growth(device, True) |
|
|
|
with tf.device(tf_device_name): |
|
import deepdanbooru.project as ddp |
|
|
|
self.model = ddp.load_model_from_project( |
|
project_path=self.project_path, |
|
compile_model=False |
|
) |
|
|
|
print(f'Loaded {self.name} model from {str(self.project_path)}') |
|
|
|
self.tags = ddp.load_tags_from_project( |
|
project_path=self.project_path |
|
) |
|
|
|
def unload(self) -> bool: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return False |
|
|
|
def interrogate( |
|
self, |
|
image: Image |
|
) -> Tuple[ |
|
Dict[str, float], |
|
Dict[str, float] |
|
]: |
|
|
|
if not hasattr(self, 'model') or self.model is None: |
|
self.load() |
|
|
|
import deepdanbooru.data as ddd |
|
|
|
|
|
image_bufs = BytesIO() |
|
image.save(image_bufs, format='PNG') |
|
image = ddd.load_image_for_evaluate( |
|
image_bufs, |
|
self.model.input_shape[2], |
|
self.model.input_shape[1] |
|
) |
|
|
|
image = image.reshape((1, *image.shape[0:3])) |
|
|
|
|
|
result = self.model.predict(image) |
|
|
|
confidents = result[0].tolist() |
|
ratings = {} |
|
tags = {} |
|
|
|
for i, tag in enumerate(self.tags): |
|
tags[tag] = confidents[i] |
|
|
|
return ratings, tags |
|
|
|
|
|
class WaifuDiffusionInterrogator(Interrogator): |
|
def __init__( |
|
self, |
|
name: str, |
|
model_path='model.onnx', |
|
tags_path='selected_tags.csv', |
|
**kwargs |
|
) -> None: |
|
super().__init__(name) |
|
self.model_path = model_path |
|
self.tags_path = tags_path |
|
self.kwargs = kwargs |
|
|
|
def download(self) -> Tuple[os.PathLike, os.PathLike]: |
|
print(f"Loading {self.name} model file from {self.kwargs['repo_id']}") |
|
|
|
model_path = Path(hf_hub_download( |
|
**self.kwargs, filename=self.model_path)) |
|
tags_path = Path(hf_hub_download( |
|
**self.kwargs, filename=self.tags_path)) |
|
return model_path, tags_path |
|
|
|
def load(self) -> None: |
|
model_path, tags_path = self.download() |
|
|
|
|
|
|
|
|
|
from launch import is_installed, run_pip |
|
if not is_installed('onnxruntime'): |
|
package = os.environ.get( |
|
'ONNXRUNTIME_PACKAGE', |
|
'onnxruntime-gpu' |
|
) |
|
|
|
run_pip(f'install {package}', 'onnxruntime') |
|
|
|
from onnxruntime import InferenceSession |
|
|
|
|
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
if use_cpu: |
|
providers.pop(0) |
|
|
|
self.model = InferenceSession(str(model_path), providers=providers) |
|
|
|
print(f'Loaded {self.name} model from {model_path}') |
|
|
|
self.tags = pd.read_csv(tags_path) |
|
|
|
def interrogate( |
|
self, |
|
image: Image |
|
) -> Tuple[ |
|
Dict[str, float], |
|
Dict[str, float] |
|
]: |
|
|
|
if not hasattr(self, 'model') or self.model is None: |
|
self.load() |
|
|
|
|
|
|
|
|
|
|
|
|
|
_, height, _, _ = self.model.get_inputs()[0].shape |
|
|
|
|
|
image = image.convert('RGBA') |
|
new_image = Image.new('RGBA', image.size, 'WHITE') |
|
new_image.paste(image, mask=image) |
|
image = new_image.convert('RGB') |
|
image = np.asarray(image) |
|
|
|
|
|
image = image[:, :, ::-1] |
|
|
|
image = dbimutils.make_square(image, height) |
|
image = dbimutils.smart_resize(image, height) |
|
image = image.astype(np.float32) |
|
image = np.expand_dims(image, 0) |
|
|
|
|
|
input_name = self.model.get_inputs()[0].name |
|
label_name = self.model.get_outputs()[0].name |
|
confidents = self.model.run([label_name], {input_name: image})[0] |
|
|
|
tags = self.tags[:][['name']] |
|
tags['confidents'] = confidents[0] |
|
|
|
|
|
ratings = dict(tags[:4].values) |
|
|
|
|
|
tags = dict(tags[4:].values) |
|
|
|
return ratings, tags |
|
|