andyleow commited on
Commit
710b706
1 Parent(s): 0bb11fa

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: 85.23 +/- 68.57
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 1000000
41
- 'learning_rate': 0.0003
42
- 'num_envs': 16
43
- 'num_steps': 1024
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.999
47
- 'gae_lambda': 0.98
48
- 'num_minibatches': 32
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'andyleow/PPO-LunarLander-v2'
58
- 'batch_size': 16384
59
- 'minibatch_size': 512}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 282.11 +/- 19.13
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a6a102290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a6a102320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a6a1023b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a6a102440>", "_build": "<function ActorCriticPolicy._build at 0x7f4a6a1024d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4a6a102560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4a6a1025f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a6a102680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4a6a102710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a6a1027a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a6a102830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a6a1028c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4a6a0f6680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683328261489613020, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoWtj3hxIy6d3MZObwjbzMzbYu68ZUwuAAAgD8AAIA/IGqOvib3kz93rLK+jQtqvv+wm77aFSy9AAAAAAAAAADNZTA+OoevP8FspT7aZL2+lPpDPjjNfrwAAAAAAAAAAJp4wbx7VI66axS2NhMXqzFSF+26pknWtQAAgD8AAIA/M8G3POfTiD8mb2E9PJqqvsgp8jodP/88AAAAAAAAAAAzTDS9BdqNu26+pjwWAqQ8aQXOvFtWiT0AAIA/AACAP8269zwpJDu69qLJO1IzyTPIQG+7Fg7ZMgAAgD8AAIA/AFv6vPYwSLrCrta6QRQzthqQczsQCfs5AACAPwAAgD+zUWq9e/CCuvHFSjmaaQUzfa0Du/b4aLgAAIA/AACAP9rFsr3hVI26F0ccO1QqhDgEAlE5BcvFuQAAgD8AAAAA5uXCPfZMSrq65yA6ml0RNlgYrDp7ezq5AACAPwAAgD8AjCs94TiCuqkxhDsq6J44m7OLug567bkAAIA/AACAP2Z/uzzsOZK5DuUSOutvV7b9u8+7g9QwuQAAgD8AAIA/zTxyPXs0gbq2cYG4PvWEs5dwJTtSoJY3AACAPwAAgD/aS7a9KWgnuml2STYSWvcxQ92vO0Woa7UAAIA/AACAPwCg4DuuXZW684phO7dopLUNM/05VhiCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC1A9RrJr+KMAWyUS/+MAXSUR0CgQv8e8wpOdX2UKGgGR0Bh0K0a6z3RaAdN6ANoCEdAoEO+otL+P3V9lChoBkdAZWiPtD2JzmgHTegDaAhHQKBFD3X7LuB1fZQoaAZHQGEUG/336ARoB03oA2gIR0CgRioSteUqdX2UKGgGR0BkRc10knkUaAdN6ANoCEdAoEwT8P4EfXV9lChoBkdAYjp6wdKdx2gHTegDaAhHQKBML6DXe3x1fZQoaAZHQGUfyfUWl/JoB03oA2gIR0CgTJgkC3gDdX2UKGgGR0BlVtfqoqCpaAdN6ANoCEdAoFIaDAaegHV9lChoBkdAZIAIjW07bWgHTegDaAhHQKBTu5dWyTp1fZQoaAZHQGQBvLgXMyJoB03oA2gIR0CgXmL3j+72dX2UKGgGR0BmcR57gKnfaAdN6ANoCEdAoF+qneizs3V9lChoBkdAZQejTKDCg2gHTegDaAhHQKBgjjSXt0F1fZQoaAZHQGP7U6HTI/9oB03oA2gIR0Cgavij+JgtdX2UKGgGR0Blx76+FlCkaAdN6ANoCEdAoGwWLehwl3V9lChoBkdAY4tifg75mGgHTegDaAhHQKBtsvGIbfh1fZQoaAZHQFthdKujh1loB03oA2gIR0Cgb6ILPUrkdX2UKGgGR0BjYopx3mmtaAdN6ANoCEdAoHBKRyOrAHV9lChoBkdAWwHbsWweNmgHTegDaAhHQKBw572L5yl1fZQoaAZHQGS+03fhuO1oB03oA2gIR0Cgck2NedCmdX2UKGgGR0Bk5xeu3c59aAdN6ANoCEdAoHN5yQxN7HV9lChoBkdAYY/d43WFvmgHTegDaAhHQKB7NrMTviN1fZQoaAZHQGGOgX/HYHxoB03oA2gIR0Cge1xJmNBGdX2UKGgGR0BhYYFxGUfQaAdN6ANoCEdAoHvh/EwWWXV9lChoBkdAYQytyPuG9GgHTegDaAhHQKCB2vsZ5zJ1fZQoaAZHQGHRTN+so2JoB03oA2gIR0Cgg0o/qxC6dX2UKGgGR0ByQzjjrAxjaAdNrgFoCEdAoIPFaY/mknV9lChoBkdAcWByeqaPS2gHTdQCaAhHQKCJXBUrCnB1fZQoaAZHQGXqsURFqi5oB03oA2gIR0CgihmR/3FldX2UKGgGR0BiR9cY64lQaAdN6ANoCEdAoIrY6wMYuXV9lChoBkdAZdVjaPCEYmgHTegDaAhHQKCLZ6YVqN91fZQoaAZHQFw53fAKv3doB03oA2gIR0CglhMvqTr3dX2UKGgGR0Bk1ZP2wmmcaAdN6ANoCEdAoJdpwS8J2XV9lChoBkdAbYMeIVM232gHTYIDaAhHQKCXoza9K291fZQoaAZHQGRo6jnFHaxoB03oA2gIR0CgmUaasp5NdX2UKGgGR0BixJ79hqj8aAdN6ANoCEdAoJz9NnGsFXV9lChoBkdAYPUMd92HL2gHTegDaAhHQKCeRk+X7ch1fZQoaAZHQGOBPDpC8e1oB03oA2gIR0CgpebBoEjgdX2UKGgGR0BkYdSbYsd1aAdN6ANoCEdAoKYHXNC7b3V9lChoBkdAXiLzxwyZa2gHTegDaAhHQKCmgZpBX0Z1fZQoaAZHQG+QTAFgUlBoB01AAmgIR0CgqGC83++/dX2UKGgGR0BfbADRtxdZaAdN6ANoCEdAoKwBUYKpk3V9lChoBkdAYKLW7voeP2gHTegDaAhHQKCtmKSgXdl1fZQoaAZHQGU0elj3EhtoB03oA2gIR0CgrhZIH1OCdX2UKGgGR0BhpFw97ngYaAdN6ANoCEdAoLZ2HrQgLnV9lChoBkdAY6aQKa5PM2gHTegDaAhHQKC3t/yXlbN1fZQoaAZHQGDuLtmcvuhoB03oA2gIR0CguOwSBbwCdX2UKGgGR0BiH3FtKqXGaAdN6ANoCEdAoLvJjc2zfXV9lChoBkdAYaJZL7Gec2gHTegDaAhHQKDFUsGPgel1fZQoaAZHQGQLLt3OfNBoB03oA2gIR0CgxYPeHi3odX2UKGgGR0BkyG7lJYknaAdN6ANoCEdAoMbPuZ1FIHV9lChoBkdAbaI0WM0gsGgHTawBaAhHQKDHi8UVSGd1fZQoaAZHQF4g349HMEBoB03oA2gIR0CgyXw66reZdX2UKGgGR0BhaxbbDdgwaAdN6ANoCEdAoMrB2+wkgXV9lChoBkdAY7au9vjwQWgHTegDaAhHQKDTvVBlcyF1fZQoaAZHQGQqWn0kGA1oB03oA2gIR0Cg0+NOdoWYdX2UKGgGR0Bud+fkFOfvaAdNAwNoCEdAoNRhuKoAGXV9lChoBkdAZBRMfRu0kWgHTegDaAhHQKDUeAjIJZ51fZQoaAZHQGI9Hggow25oB03oA2gIR0Cg1tcGLUCrdX2UKGgGR0BmyNxbSqlxaAdN6ANoCEdAoNpoY3vQW3V9lChoBkdAYu2VmjCYTmgHTegDaAhHQKDi+jIq9Xd1fZQoaAZHQGTtVXV9Wp9oB03oA2gIR0Cg48jP4VRDdX2UKGgGR0BjlVMuez2OaAdN6ANoCEdAoOSOjIq9XnV9lChoBkdAXXBUPxx1gmgHTegDaAhHQKDmyQZGax51fZQoaAZHQGAxnWrfcetoB03oA2gIR0Cg8d9jXnQqdX2UKGgGR0BkITvkRzzVaAdN6ANoCEdAoPIoo/iYLXV9lChoBkdAYB7lpXZGrmgHTegDaAhHQKDz5NYbKih1fZQoaAZHQGKK7VSXMQpoB03oA2gIR0Cg9NkeIVM3dX2UKGgGR0BIp0zj3mFKaAdL+mgIR0Cg9jwl0HQhdX2UKGgGR0Bg/70nPVuraAdN6ANoCEdAoPblYnv2G3V9lChoBkdAZUjM9r4332gHTegDaAhHQKD4K7Omixp1fZQoaAZHQGX+vgFX7tRoB03oA2gIR0Cg/y6unuRcdX2UKGgGR0BjcJb0OEuhaAdN6ANoCEdAoP9MOuq3mXV9lChoBkdAZqG4//vOQmgHTegDaAhHQKD/qSV4X411fZQoaAZHQGc030f5k9VoB03oA2gIR0Cg/7i2c8T0dX2UKGgGR0Bio2hPCVKPaAdN6ANoCEdAoQFJpcophHV9lChoBkdAbYIQ/X5FgGgHTWoCaAhHQKEB+CW/rSp1fZQoaAZHQGVYjgIhQnBoB03oA2gIR0ChBDI4MnZ1dX2UKGgGR0BwIOeyzHCGaAdNqgJoCEdAoQjeHvc8DHV9lChoBkdAYlH0aIeo1mgHTegDaAhHQKEM9m3fAKx1fZQoaAZHQGDrlcyFfzBoB03oA2gIR0ChEjm0NSZSdX2UKGgGR0BkJOnqFAVxaAdN6ANoCEdAoRM+TA31jHV9lChoBkdAZZulabF0gmgHTegDaAhHQKETbEd/8VJ1fZQoaAZHQGCfz41xbStoB03oA2gIR0ChHTRArxy5dX2UKGgGR0BveQtUXHinaAdNxAFoCEdAoR1S6Ymb9nV9lChoBkdAZlz6qsEJSmgHTegDaAhHQKEfVNi6QNl1fZQoaAZHQGCWjm0VrRBoB03oA2gIR0ChH+8PnSv1dX2UKGgGR0Bxkh3jdYW+aAdNoQJoCEdAoSD0ZxaPjnV9lChoBkdAYF16/IsAemgHTegDaAhHQKEhE7vG6wt1fZQoaAZHQG8FtqYZ2p1oB01QA2gIR0ChI1yeiBXkdX2UKGgGR0Br1K20AtFsaAdNigNoCEdAoSR7mSyMUHV9lChoBkdARHlDF6zE8GgHS9NoCEdAoSbbUutfX3V9lChoBkdAZBzhybQTmGgHTegDaAhHQKEnv6jWTX91fZQoaAZHQF7kzzErGzdoB03oA2gIR0ChKDIgNgBtdX2UKGgGR0BgEPJiiItUaAdN6ANoCEdAoSpZV2iconV9lChoBkdAYM6lKsdT52gHTegDaAhHQKE0WTIvJzV1fZQoaAZHQHGSlu3trsVoB02iA2gIR0ChNRrDQ7cPdX2UKGgGR0BwAKdK/VRUaAdNdwFoCEdAoTWQ8B+4LHV9lChoBkdAYxv2lEZzgmgHTegDaAhHQKE6h+TeO4p1fZQoaAZHQGX739aUzKtoB03oA2gIR0ChO31hkRSQdX2UKGgGR0BpGYPXkHUuaAdN6ANoCEdAoTunBSDRMXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTEwLTlhNzE0YTgxZWY3Mj6UjAg8bGFtYmRhPpRLDkMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0fa825a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0fa825a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0fa825a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0fa825a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f0fa825aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f0fa825ab00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0fa825ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0fa825ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0fa825acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0fa825ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0fa825add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0fa825ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0fa8264300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684405617310292212, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAa1Oz5PVp4/cFdPPmlY6b7G3qk+ZPM+OwAAAAAAAAAAAL4PvZ/Tl7sI6Qw7u05yPMil1jxFaVC9AACAPwAAgD/NonQ8C5bSPat+5j3sT4++tdAnPfYjGLwAAAAAAAAAAM22IL78MJU//iHZvkw1AL+sI4++jx2BvgAAAAAAAAAAzT/KvBoMpj+i1Iq+QyQSv7flUrz6Y7W9AAAAAAAAAADN7EI6AtuwPzVnRjshHr6+6hZLPWKN/TwAAAAAAAAAADPbFL3Z2C8/7Y8KPQX2yr5IDCu9yiKLPQAAAAAAAAAAmk3lO4d9sz9jczU/auLEvg++BLyyZyS+AAAAAAAAAACAqKa9EnuIP9Jrcr3iggG/SjGjvc6sND0AAAAAAAAAAM1mnrzP6A8/DfuGvVwRzr6ETmy93/YkvQAAAAAAAAAAM2rZPCsuqD/FTpY+0jAcv26wZzy6FyU+AAAAAAAAAACA/lI9XeS4Py6IRz6jD4W+InAaPtq+Dj4AAAAAAAAAAE1AOr2kMTq7IkSlPG7xvjwinnK89T+iPQAAgD8AAIA/TdiKveOQhj+glBi+Q5jsvvLiDL6gMrC9AAAAAAAAAABA0c092fGWP4iLDT+GrTe/zFYFPVKpWz4AAAAAAAAAAJqZiTpfmQI+QwDwvIn0lr4jsjW9qwaCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF78DW9US+MAWyUS+KMAXSUR0CfQl++dsi0dX2UKGgGR0BxbhGKAJ9iaAdNDQFoCEdAn0LxceKba3V9lChoBkdAdA3SKm8/U2gHS+FoCEdAn0MJ8fFJhHV9lChoBkdAcPSf51vETGgHTQABaAhHQJ9DXmKZUkx1fZQoaAZHQHEnfJNj9XNoB0v4aAhHQJ9ErYPGyX51fZQoaAZHQHC2V49ovi9oB00bAWgIR0CfRPKNAC4jdX2UKGgGR0BxCgpWmxdIaAdL1mgIR0CfRYj+rELqdX2UKGgGR0BxfmQ7tAs1aAdL32gIR0CfRfCfpUxVdX2UKGgGR0Bx5iCwr1/UaAdL92gIR0CfRl8CPp6hdX2UKGgGR0ByJ2ipNsWPaAdL/WgIR0CfRrXVsk6cdX2UKGgGR0BzLTRNRFZxaAdL9mgIR0CfRsRbbDdhdX2UKGgGR0BzSjJfYzzmaAdL02gIR0CfSDCLuQZGdX2UKGgGR0Btjq9EkSmJaAdL7WgIR0CfSDCvovBadX2UKGgGR0Bx0RD4QBgeaAdNBQFoCEdAn0hEj1PFenV9lChoBkdAcz7Rg7YChmgHS+xoCEdAn0h2mk30gHV9lChoBkdAcWsg9Net0WgHS9JoCEdAn0kEyckMTnV9lChoBkdAcGWF9roGIWgHS91oCEdAn0lhFqi48XV9lChoBkdAcjpX2dupCWgHS/loCEdAn0qJKvmoznV9lChoBkdAclfcRDkU9WgHTSIBaAhHQJ9KvMnqmj11fZQoaAZHQHAm9zGPxQVoB0vdaAhHQJ9LCOPvKEF1fZQoaAZHQDo7S2H+IdloB03oA2gIR0CfS0OBUaQ4dX2UKGgGR0BtTEQ/X5FgaAdL/mgIR0CfTBV9Wp6ydX2UKGgGR0BwTBUVBUrDaAdL62gIR0CfTH1IiC8OdX2UKGgGR0By+0pobn5jaAdL32gIR0CfTJPo3aSLdX2UKGgGR0By2/aews5GaAdNAAFoCEdAn0ymeYlY2nV9lChoBkdAcngN/vv0AmgHS+toCEdAn00lSbYsd3V9lChoBkdAcKyEdvKlpGgHS/JoCEdAn00+JUHY6HV9lChoBkdAcR2mg8KXwGgHS9loCEdAn2BWMwUQCnV9lChoBkdAcdb5GBnSOWgHS95oCEdAn2BsyWRigHV9lChoBkdActUT8YQ8OmgHS+toCEdAn2DPD+BH1HV9lChoBkdAcc/WgezUqmgHS+NoCEdAn2F1twaR6nV9lChoBkdAcQ9DZlFtsWgHS9xoCEdAn2GtMPBi1HV9lChoBkdAcUQQ4S6DoWgHTQABaAhHQJ9hwM5OrQx1fZQoaAZHQHOc1nAZbY9oB0vYaAhHQJ9ivK/20zF1fZQoaAZHQHM1ZcophF5oB0vJaAhHQJ9jEOI68xt1fZQoaAZHQHFVWKEWZZ1oB0vdaAhHQJ9jhmukk8l1fZQoaAZHQG5yCiyprDZoB0vuaAhHQJ9jxvl2eQN1fZQoaAZHQG7JtQsPJ7toB0vcaAhHQJ9lrWbwz+F1fZQoaAZHQG3Xg9/z8P5oB0vwaAhHQJ9lsw+MZP51fZQoaAZHQHNXnAAQxvhoB00LAWgIR0CfZ6LK3d9EdX2UKGgGR0BzAeO1fE4vaAdNBAFoCEdAn2iUwvg3tXV9lChoBkdAcbZlt0mtyWgHTSwBaAhHQJ9ozRNRFZx1fZQoaAZHQHCDprULDyhoB0vvaAhHQJ9pAOG0u151fZQoaAZHQHBwBKg7HQ1oB0voaAhHQJ9pPmeUY9B1fZQoaAZHQHB/L9ZRsM1oB00aAWgIR0CfaUlRP421dX2UKGgGR0ByaEG8mKIjaAdL/2gIR0CfaX0xdpqRdX2UKGgGR0ByMOzt1IRRaAdL92gIR0Cfas+FlCkXdX2UKGgGR0BvUIUahpQDaAdL1GgIR0Cfaw+QlruZdX2UKGgGR0BzP1DD0lJIaAdNCAFoCEdAn2sa1XvH93V9lChoBkdAcqBRWLgn+mgHTRoBaAhHQJ9sAwDeTFF1fZQoaAZHQHQfOxnnMdNoB0voaAhHQJ9sQ/1QIld1fZQoaAZHQHIvbE9+w1RoB0voaAhHQJ9sgChew9t1fZQoaAZHQHDYPwI+nqFoB00IAWgIR0CfbJ1Vo6CEdX2UKGgGR0BwKoQGwA2iaAdL5mgIR0CfbaDZlFtsdX2UKGgGR0Btip+tr9EUaAdL52gIR0Cfbsy5I6KcdX2UKGgGR0BxXDPqs2ehaAdNIgFoCEdAn28GzKLbYnV9lChoBkdAcZPkZ75VO2gHS99oCEdAn28iemNzbXV9lChoBkdAcdPIatLcsWgHS+toCEdAn2+uKCQLeHV9lChoBkdAcgsHS4OMEWgHS+poCEdAn2/VclgMMXV9lChoBkdAc2VsRg7YCmgHS8hoCEdAn3BHLV4HHHV9lChoBkdAcQXp4bCJoGgHTRIBaAhHQJ9wjhBJI2B1fZQoaAZHQG/3rsrupjtoB00GAWgIR0CfcLWjoIOZdX2UKGgGR0BykrF1jiGWaAdL2GgIR0CfcLQTEit8dX2UKGgGR0ByDA85jpcHaAdNEgFoCEdAn3DPViF0xXV9lChoBkdAczCtcv/R3WgHS9VoCEdAn3EkPUaybHV9lChoBkdAcioj7yhBaGgHTQMBaAhHQJ9xbZBcAzZ1fZQoaAZHQHEDoKMNtqJoB0vqaAhHQJ9xvjHXEqF1fZQoaAZHQHGwPY8Md95oB0vqaAhHQJ9x9wAEMb51fZQoaAZHQHJxO8K5TZRoB00DAWgIR0CfcmLJjlPrdX2UKGgGR0BRR6jesPrfaAdLnmgIR0CfcrGqPwNLdX2UKGgGR0Byhcxh2GIsaAdL5GgIR0CfctBjFyaNdX2UKGgGR0A3w8rZrYXgaAdLuWgIR0Cfc+icG1QZdX2UKGgGR0By5MaWHDaXaAdL3WgIR0Cfc/8F6iTMdX2UKGgGR0BwuIkHD766aAdL32gIR0CfdUT/Q0GedX2UKGgGR0By2+zw+dK/aAdNIAFoCEdAn3V0ornTzHV9lChoBkdAc8C+u/1xsGgHS8FoCEdAn3XVl9SdfHV9lChoBkdAcxGPuG9HtmgHS/JoCEdAn3Y2RNh3JXV9lChoBkdAcbGN4qwyI2gHS+9oCEdAn3ZEth/iHnV9lChoBkdAcS6gSeyzHGgHTR0BaAhHQJ92SsYEW691fZQoaAZHQHG970Bfa6BoB0v6aAhHQJ92RcOby6N1fZQoaAZHQG/YORT0g8toB0vmaAhHQJ92asPrfLt1fZQoaAZHQHLqS2Yv38JoB0v+aAhHQJ92fwF1SwZ1fZQoaAZHQG8GQKBun/FoB0voaAhHQJ93A5GSZBt1fZQoaAZHQHOCQD3dsSFoB0vJaAhHQJ93d/x2B8R1fZQoaAZHQHJinyI55qxoB0v3aAhHQJ93kdCE6DJ1fZQoaAZHQHKKDoMa0hNoB0vhaAhHQJ93iRW912d1fZQoaAZHQHARxew9q1xoB0vtaAhHQJ94FXp4bCJ1fZQoaAZHQG+Hs41gpjNoB0vXaAhHQJ941nBciW51fZQoaAZHQHD/2S+xnnNoB00AAWgIR0CfeeHVf/m1dX2UKGgGR0BvsZFEy+HraAdL3mgIR0CfennEl3QldX2UKGgGR0BzKOvmozeoaAdL7mgIR0CferKUVzp5dX2UKGgGR0B0Gq7Dl5nlaAdLx2gIR0Cfeu6LwWnCdX2UKGgGR0BxASOmzjWDaAdL5WgIR0Cfe27JnxrjdX2UKGgGR0Bxc4smOU+taAdL9WgIR0Cfe25YYBNmdX2UKGgGR0BzH/kCFK02aAdL7GgIR0Cfe6K0lZ5idX2UKGgGR0BUvFCCz1K5aAdLk2gIR0Cfe50K7ZnMdX2UKGgGR0Bwl1iF0xM4aAdL7WgIR0Cfe86eGwiadX2UKGgGR0BwDxz6rNnoaAdL/2gIR0CffAKqXF98dX2UKGgGR0BvgwvHtF8YaAdL/WgIR0CffAL7oB7vdX2UKGgGR0BtjMByS3b3aAdL32gIR0CffCpLmITHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81afa9e9fe5bba691985937d68911ad974b15cf637627ea406166cb2d8125461
3
- size 146600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:724c41b2cb18c69b098ad5218d35aa8b3da96fbd01590b5b3dbc0298513ec486
3
+ size 146655
ppo-LunarLander-v2/data CHANGED
@@ -4,72 +4,57 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a6a102290>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a6a102320>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a6a1023b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a6a102440>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f4a6a1024d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f4a6a102560>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4a6a1025f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a6a102680>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f4a6a102710>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a6a1027a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a6a102830>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a6a1028c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f4a6a0f6680>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1683328261489613020,
30
- "learning_rate": 0.0,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoWtj3hxIy6d3MZObwjbzMzbYu68ZUwuAAAgD8AAIA/IGqOvib3kz93rLK+jQtqvv+wm77aFSy9AAAAAAAAAADNZTA+OoevP8FspT7aZL2+lPpDPjjNfrwAAAAAAAAAAJp4wbx7VI66axS2NhMXqzFSF+26pknWtQAAgD8AAIA/M8G3POfTiD8mb2E9PJqqvsgp8jodP/88AAAAAAAAAAAzTDS9BdqNu26+pjwWAqQ8aQXOvFtWiT0AAIA/AACAP8269zwpJDu69qLJO1IzyTPIQG+7Fg7ZMgAAgD8AAIA/AFv6vPYwSLrCrta6QRQzthqQczsQCfs5AACAPwAAgD+zUWq9e/CCuvHFSjmaaQUzfa0Du/b4aLgAAIA/AACAP9rFsr3hVI26F0ccO1QqhDgEAlE5BcvFuQAAgD8AAAAA5uXCPfZMSrq65yA6ml0RNlgYrDp7ezq5AACAPwAAgD8AjCs94TiCuqkxhDsq6J44m7OLug567bkAAIA/AACAP2Z/uzzsOZK5DuUSOutvV7b9u8+7g9QwuQAAgD8AAIA/zTxyPXs0gbq2cYG4PvWEs5dwJTtSoJY3AACAPwAAgD/aS7a9KWgnuml2STYSWvcxQ92vO0Woa7UAAIA/AACAPwCg4DuuXZW684phO7dopLUNM/05VhiCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC1A9RrJr+KMAWyUS/+MAXSUR0CgQv8e8wpOdX2UKGgGR0Bh0K0a6z3RaAdN6ANoCEdAoEO+otL+P3V9lChoBkdAZWiPtD2JzmgHTegDaAhHQKBFD3X7LuB1fZQoaAZHQGEUG/336ARoB03oA2gIR0CgRioSteUqdX2UKGgGR0BkRc10knkUaAdN6ANoCEdAoEwT8P4EfXV9lChoBkdAYjp6wdKdx2gHTegDaAhHQKBML6DXe3x1fZQoaAZHQGUfyfUWl/JoB03oA2gIR0CgTJgkC3gDdX2UKGgGR0BlVtfqoqCpaAdN6ANoCEdAoFIaDAaegHV9lChoBkdAZIAIjW07bWgHTegDaAhHQKBTu5dWyTp1fZQoaAZHQGQBvLgXMyJoB03oA2gIR0CgXmL3j+72dX2UKGgGR0BmcR57gKnfaAdN6ANoCEdAoF+qneizs3V9lChoBkdAZQejTKDCg2gHTegDaAhHQKBgjjSXt0F1fZQoaAZHQGP7U6HTI/9oB03oA2gIR0Cgavij+JgtdX2UKGgGR0Blx76+FlCkaAdN6ANoCEdAoGwWLehwl3V9lChoBkdAY4tifg75mGgHTegDaAhHQKBtsvGIbfh1fZQoaAZHQFthdKujh1loB03oA2gIR0Cgb6ILPUrkdX2UKGgGR0BjYopx3mmtaAdN6ANoCEdAoHBKRyOrAHV9lChoBkdAWwHbsWweNmgHTegDaAhHQKBw572L5yl1fZQoaAZHQGS+03fhuO1oB03oA2gIR0Cgck2NedCmdX2UKGgGR0Bk5xeu3c59aAdN6ANoCEdAoHN5yQxN7HV9lChoBkdAYY/d43WFvmgHTegDaAhHQKB7NrMTviN1fZQoaAZHQGGOgX/HYHxoB03oA2gIR0Cge1xJmNBGdX2UKGgGR0BhYYFxGUfQaAdN6ANoCEdAoHvh/EwWWXV9lChoBkdAYQytyPuG9GgHTegDaAhHQKCB2vsZ5zJ1fZQoaAZHQGHRTN+so2JoB03oA2gIR0Cgg0o/qxC6dX2UKGgGR0ByQzjjrAxjaAdNrgFoCEdAoIPFaY/mknV9lChoBkdAcWByeqaPS2gHTdQCaAhHQKCJXBUrCnB1fZQoaAZHQGXqsURFqi5oB03oA2gIR0CgihmR/3FldX2UKGgGR0BiR9cY64lQaAdN6ANoCEdAoIrY6wMYuXV9lChoBkdAZdVjaPCEYmgHTegDaAhHQKCLZ6YVqN91fZQoaAZHQFw53fAKv3doB03oA2gIR0CglhMvqTr3dX2UKGgGR0Bk1ZP2wmmcaAdN6ANoCEdAoJdpwS8J2XV9lChoBkdAbYMeIVM232gHTYIDaAhHQKCXoza9K291fZQoaAZHQGRo6jnFHaxoB03oA2gIR0CgmUaasp5NdX2UKGgGR0BixJ79hqj8aAdN6ANoCEdAoJz9NnGsFXV9lChoBkdAYPUMd92HL2gHTegDaAhHQKCeRk+X7ch1fZQoaAZHQGOBPDpC8e1oB03oA2gIR0CgpebBoEjgdX2UKGgGR0BkYdSbYsd1aAdN6ANoCEdAoKYHXNC7b3V9lChoBkdAXiLzxwyZa2gHTegDaAhHQKCmgZpBX0Z1fZQoaAZHQG+QTAFgUlBoB01AAmgIR0CgqGC83++/dX2UKGgGR0BfbADRtxdZaAdN6ANoCEdAoKwBUYKpk3V9lChoBkdAYKLW7voeP2gHTegDaAhHQKCtmKSgXdl1fZQoaAZHQGU0elj3EhtoB03oA2gIR0CgrhZIH1OCdX2UKGgGR0BhpFw97ngYaAdN6ANoCEdAoLZ2HrQgLnV9lChoBkdAY6aQKa5PM2gHTegDaAhHQKC3t/yXlbN1fZQoaAZHQGDuLtmcvuhoB03oA2gIR0CguOwSBbwCdX2UKGgGR0BiH3FtKqXGaAdN6ANoCEdAoLvJjc2zfXV9lChoBkdAYaJZL7Gec2gHTegDaAhHQKDFUsGPgel1fZQoaAZHQGQLLt3OfNBoB03oA2gIR0CgxYPeHi3odX2UKGgGR0BkyG7lJYknaAdN6ANoCEdAoMbPuZ1FIHV9lChoBkdAbaI0WM0gsGgHTawBaAhHQKDHi8UVSGd1fZQoaAZHQF4g349HMEBoB03oA2gIR0CgyXw66reZdX2UKGgGR0BhaxbbDdgwaAdN6ANoCEdAoMrB2+wkgXV9lChoBkdAY7au9vjwQWgHTegDaAhHQKDTvVBlcyF1fZQoaAZHQGQqWn0kGA1oB03oA2gIR0Cg0+NOdoWYdX2UKGgGR0Bud+fkFOfvaAdNAwNoCEdAoNRhuKoAGXV9lChoBkdAZBRMfRu0kWgHTegDaAhHQKDUeAjIJZ51fZQoaAZHQGI9Hggow25oB03oA2gIR0Cg1tcGLUCrdX2UKGgGR0BmyNxbSqlxaAdN6ANoCEdAoNpoY3vQW3V9lChoBkdAYu2VmjCYTmgHTegDaAhHQKDi+jIq9Xd1fZQoaAZHQGTtVXV9Wp9oB03oA2gIR0Cg48jP4VRDdX2UKGgGR0BjlVMuez2OaAdN6ANoCEdAoOSOjIq9XnV9lChoBkdAXXBUPxx1gmgHTegDaAhHQKDmyQZGax51fZQoaAZHQGAxnWrfcetoB03oA2gIR0Cg8d9jXnQqdX2UKGgGR0BkITvkRzzVaAdN6ANoCEdAoPIoo/iYLXV9lChoBkdAYB7lpXZGrmgHTegDaAhHQKDz5NYbKih1fZQoaAZHQGKK7VSXMQpoB03oA2gIR0Cg9NkeIVM3dX2UKGgGR0BIp0zj3mFKaAdL+mgIR0Cg9jwl0HQhdX2UKGgGR0Bg/70nPVuraAdN6ANoCEdAoPblYnv2G3V9lChoBkdAZUjM9r4332gHTegDaAhHQKD4K7Omixp1fZQoaAZHQGX+vgFX7tRoB03oA2gIR0Cg/y6unuRcdX2UKGgGR0BjcJb0OEuhaAdN6ANoCEdAoP9MOuq3mXV9lChoBkdAZqG4//vOQmgHTegDaAhHQKD/qSV4X411fZQoaAZHQGc030f5k9VoB03oA2gIR0Cg/7i2c8T0dX2UKGgGR0Bio2hPCVKPaAdN6ANoCEdAoQFJpcophHV9lChoBkdAbYIQ/X5FgGgHTWoCaAhHQKEB+CW/rSp1fZQoaAZHQGVYjgIhQnBoB03oA2gIR0ChBDI4MnZ1dX2UKGgGR0BwIOeyzHCGaAdNqgJoCEdAoQjeHvc8DHV9lChoBkdAYlH0aIeo1mgHTegDaAhHQKEM9m3fAKx1fZQoaAZHQGDrlcyFfzBoB03oA2gIR0ChEjm0NSZSdX2UKGgGR0BkJOnqFAVxaAdN6ANoCEdAoRM+TA31jHV9lChoBkdAZZulabF0gmgHTegDaAhHQKETbEd/8VJ1fZQoaAZHQGCfz41xbStoB03oA2gIR0ChHTRArxy5dX2UKGgGR0BveQtUXHinaAdNxAFoCEdAoR1S6Ymb9nV9lChoBkdAZlz6qsEJSmgHTegDaAhHQKEfVNi6QNl1fZQoaAZHQGCWjm0VrRBoB03oA2gIR0ChH+8PnSv1dX2UKGgGR0Bxkh3jdYW+aAdNoQJoCEdAoSD0ZxaPjnV9lChoBkdAYF16/IsAemgHTegDaAhHQKEhE7vG6wt1fZQoaAZHQG8FtqYZ2p1oB01QA2gIR0ChI1yeiBXkdX2UKGgGR0Br1K20AtFsaAdNigNoCEdAoSR7mSyMUHV9lChoBkdARHlDF6zE8GgHS9NoCEdAoSbbUutfX3V9lChoBkdAZBzhybQTmGgHTegDaAhHQKEnv6jWTX91fZQoaAZHQF7kzzErGzdoB03oA2gIR0ChKDIgNgBtdX2UKGgGR0BgEPJiiItUaAdN6ANoCEdAoSpZV2iconV9lChoBkdAYM6lKsdT52gHTegDaAhHQKE0WTIvJzV1fZQoaAZHQHGSlu3trsVoB02iA2gIR0ChNRrDQ7cPdX2UKGgGR0BwAKdK/VRUaAdNdwFoCEdAoTWQ8B+4LHV9lChoBkdAYxv2lEZzgmgHTegDaAhHQKE6h+TeO4p1fZQoaAZHQGX739aUzKtoB03oA2gIR0ChO31hkRSQdX2UKGgGR0BpGYPXkHUuaAdN6ANoCEdAoTunBSDRMXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
- "n_steps": 1024,
56
- "gamma": 0.999,
57
- "gae_lambda": 0.98,
58
- "ent_coef": 0.01,
59
- "vf_coef": 0.5,
60
- "max_grad_norm": 0.5,
61
- "batch_size": 64,
62
- "n_epochs": 4,
63
- "clip_range": {
64
- ":type:": "<class 'function'>",
65
- ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTEwLTlhNzE0YTgxZWY3Mj6UjAg8bGFtYmRhPpRLDkMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
- },
67
- "clip_range_vf": null,
68
- "normalize_advantage": true,
69
- "target_kl": null,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
  "dtype": "float32",
74
  "bounded_below": "[ True True True True True True True True]",
75
  "bounded_above": "[ True True True True True True True True]",
@@ -84,7 +69,7 @@
84
  },
85
  "action_space": {
86
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
- ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
  "n": "4",
89
  "start": "0",
90
  "_shape": [],
@@ -92,8 +77,23 @@
92
  "_np_random": null
93
  },
94
  "n_envs": 16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0fa825a830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0fa825a8c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0fa825a950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0fa825a9e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0fa825aa70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0fa825ab00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0fa825ab90>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0fa825ac20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0fa825acb0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0fa825ad40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0fa825add0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0fa825ae60>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0fa8264300>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1684405617310292212,
30
+ "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAa1Oz5PVp4/cFdPPmlY6b7G3qk+ZPM+OwAAAAAAAAAAAL4PvZ/Tl7sI6Qw7u05yPMil1jxFaVC9AACAPwAAgD/NonQ8C5bSPat+5j3sT4++tdAnPfYjGLwAAAAAAAAAAM22IL78MJU//iHZvkw1AL+sI4++jx2BvgAAAAAAAAAAzT/KvBoMpj+i1Iq+QyQSv7flUrz6Y7W9AAAAAAAAAADN7EI6AtuwPzVnRjshHr6+6hZLPWKN/TwAAAAAAAAAADPbFL3Z2C8/7Y8KPQX2yr5IDCu9yiKLPQAAAAAAAAAAmk3lO4d9sz9jczU/auLEvg++BLyyZyS+AAAAAAAAAACAqKa9EnuIP9Jrcr3iggG/SjGjvc6sND0AAAAAAAAAAM1mnrzP6A8/DfuGvVwRzr6ETmy93/YkvQAAAAAAAAAAM2rZPCsuqD/FTpY+0jAcv26wZzy6FyU+AAAAAAAAAACA/lI9XeS4Py6IRz6jD4W+InAaPtq+Dj4AAAAAAAAAAE1AOr2kMTq7IkSlPG7xvjwinnK89T+iPQAAgD8AAIA/TdiKveOQhj+glBi+Q5jsvvLiDL6gMrC9AAAAAAAAAABA0c092fGWP4iLDT+GrTe/zFYFPVKpWz4AAAAAAAAAAJqZiTpfmQI+QwDwvIn0lr4jsjW9qwaCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF78DW9US+MAWyUS+KMAXSUR0CfQl++dsi0dX2UKGgGR0BxbhGKAJ9iaAdNDQFoCEdAn0LxceKba3V9lChoBkdAdA3SKm8/U2gHS+FoCEdAn0MJ8fFJhHV9lChoBkdAcPSf51vETGgHTQABaAhHQJ9DXmKZUkx1fZQoaAZHQHEnfJNj9XNoB0v4aAhHQJ9ErYPGyX51fZQoaAZHQHC2V49ovi9oB00bAWgIR0CfRPKNAC4jdX2UKGgGR0BxCgpWmxdIaAdL1mgIR0CfRYj+rELqdX2UKGgGR0BxfmQ7tAs1aAdL32gIR0CfRfCfpUxVdX2UKGgGR0Bx5iCwr1/UaAdL92gIR0CfRl8CPp6hdX2UKGgGR0ByJ2ipNsWPaAdL/WgIR0CfRrXVsk6cdX2UKGgGR0BzLTRNRFZxaAdL9mgIR0CfRsRbbDdhdX2UKGgGR0BzSjJfYzzmaAdL02gIR0CfSDCLuQZGdX2UKGgGR0Btjq9EkSmJaAdL7WgIR0CfSDCvovBadX2UKGgGR0Bx0RD4QBgeaAdNBQFoCEdAn0hEj1PFenV9lChoBkdAcz7Rg7YChmgHS+xoCEdAn0h2mk30gHV9lChoBkdAcWsg9Net0WgHS9JoCEdAn0kEyckMTnV9lChoBkdAcGWF9roGIWgHS91oCEdAn0lhFqi48XV9lChoBkdAcjpX2dupCWgHS/loCEdAn0qJKvmoznV9lChoBkdAclfcRDkU9WgHTSIBaAhHQJ9KvMnqmj11fZQoaAZHQHAm9zGPxQVoB0vdaAhHQJ9LCOPvKEF1fZQoaAZHQDo7S2H+IdloB03oA2gIR0CfS0OBUaQ4dX2UKGgGR0BtTEQ/X5FgaAdL/mgIR0CfTBV9Wp6ydX2UKGgGR0BwTBUVBUrDaAdL62gIR0CfTH1IiC8OdX2UKGgGR0By+0pobn5jaAdL32gIR0CfTJPo3aSLdX2UKGgGR0By2/aews5GaAdNAAFoCEdAn0ymeYlY2nV9lChoBkdAcngN/vv0AmgHS+toCEdAn00lSbYsd3V9lChoBkdAcKyEdvKlpGgHS/JoCEdAn00+JUHY6HV9lChoBkdAcR2mg8KXwGgHS9loCEdAn2BWMwUQCnV9lChoBkdAcdb5GBnSOWgHS95oCEdAn2BsyWRigHV9lChoBkdActUT8YQ8OmgHS+toCEdAn2DPD+BH1HV9lChoBkdAcc/WgezUqmgHS+NoCEdAn2F1twaR6nV9lChoBkdAcQ9DZlFtsWgHS9xoCEdAn2GtMPBi1HV9lChoBkdAcUQQ4S6DoWgHTQABaAhHQJ9hwM5OrQx1fZQoaAZHQHOc1nAZbY9oB0vYaAhHQJ9ivK/20zF1fZQoaAZHQHM1ZcophF5oB0vJaAhHQJ9jEOI68xt1fZQoaAZHQHFVWKEWZZ1oB0vdaAhHQJ9jhmukk8l1fZQoaAZHQG5yCiyprDZoB0vuaAhHQJ9jxvl2eQN1fZQoaAZHQG7JtQsPJ7toB0vcaAhHQJ9lrWbwz+F1fZQoaAZHQG3Xg9/z8P5oB0vwaAhHQJ9lsw+MZP51fZQoaAZHQHNXnAAQxvhoB00LAWgIR0CfZ6LK3d9EdX2UKGgGR0BzAeO1fE4vaAdNBAFoCEdAn2iUwvg3tXV9lChoBkdAcbZlt0mtyWgHTSwBaAhHQJ9ozRNRFZx1fZQoaAZHQHCDprULDyhoB0vvaAhHQJ9pAOG0u151fZQoaAZHQHBwBKg7HQ1oB0voaAhHQJ9pPmeUY9B1fZQoaAZHQHB/L9ZRsM1oB00aAWgIR0CfaUlRP421dX2UKGgGR0ByaEG8mKIjaAdL/2gIR0CfaX0xdpqRdX2UKGgGR0ByMOzt1IRRaAdL92gIR0Cfas+FlCkXdX2UKGgGR0BvUIUahpQDaAdL1GgIR0Cfaw+QlruZdX2UKGgGR0BzP1DD0lJIaAdNCAFoCEdAn2sa1XvH93V9lChoBkdAcqBRWLgn+mgHTRoBaAhHQJ9sAwDeTFF1fZQoaAZHQHQfOxnnMdNoB0voaAhHQJ9sQ/1QIld1fZQoaAZHQHIvbE9+w1RoB0voaAhHQJ9sgChew9t1fZQoaAZHQHDYPwI+nqFoB00IAWgIR0CfbJ1Vo6CEdX2UKGgGR0BwKoQGwA2iaAdL5mgIR0CfbaDZlFtsdX2UKGgGR0Btip+tr9EUaAdL52gIR0Cfbsy5I6KcdX2UKGgGR0BxXDPqs2ehaAdNIgFoCEdAn28GzKLbYnV9lChoBkdAcZPkZ75VO2gHS99oCEdAn28iemNzbXV9lChoBkdAcdPIatLcsWgHS+toCEdAn2+uKCQLeHV9lChoBkdAcgsHS4OMEWgHS+poCEdAn2/VclgMMXV9lChoBkdAc2VsRg7YCmgHS8hoCEdAn3BHLV4HHHV9lChoBkdAcQXp4bCJoGgHTRIBaAhHQJ9wjhBJI2B1fZQoaAZHQG/3rsrupjtoB00GAWgIR0CfcLWjoIOZdX2UKGgGR0BykrF1jiGWaAdL2GgIR0CfcLQTEit8dX2UKGgGR0ByDA85jpcHaAdNEgFoCEdAn3DPViF0xXV9lChoBkdAczCtcv/R3WgHS9VoCEdAn3EkPUaybHV9lChoBkdAcioj7yhBaGgHTQMBaAhHQJ9xbZBcAzZ1fZQoaAZHQHEDoKMNtqJoB0vqaAhHQJ9xvjHXEqF1fZQoaAZHQHGwPY8Md95oB0vqaAhHQJ9x9wAEMb51fZQoaAZHQHJxO8K5TZRoB00DAWgIR0CfcmLJjlPrdX2UKGgGR0BRR6jesPrfaAdLnmgIR0CfcrGqPwNLdX2UKGgGR0Byhcxh2GIsaAdL5GgIR0CfctBjFyaNdX2UKGgGR0A3w8rZrYXgaAdLuWgIR0Cfc+icG1QZdX2UKGgGR0By5MaWHDaXaAdL3WgIR0Cfc/8F6iTMdX2UKGgGR0BwuIkHD766aAdL32gIR0CfdUT/Q0GedX2UKGgGR0By2+zw+dK/aAdNIAFoCEdAn3V0ornTzHV9lChoBkdAc8C+u/1xsGgHS8FoCEdAn3XVl9SdfHV9lChoBkdAcxGPuG9HtmgHS/JoCEdAn3Y2RNh3JXV9lChoBkdAcbGN4qwyI2gHS+9oCEdAn3ZEth/iHnV9lChoBkdAcS6gSeyzHGgHTR0BaAhHQJ92SsYEW691fZQoaAZHQHG970Bfa6BoB0v6aAhHQJ92RcOby6N1fZQoaAZHQG/YORT0g8toB0vmaAhHQJ92asPrfLt1fZQoaAZHQHLqS2Yv38JoB0v+aAhHQJ92fwF1SwZ1fZQoaAZHQG8GQKBun/FoB0voaAhHQJ93A5GSZBt1fZQoaAZHQHOCQD3dsSFoB0vJaAhHQJ93d/x2B8R1fZQoaAZHQHJinyI55qxoB0v3aAhHQJ93kdCE6DJ1fZQoaAZHQHKKDoMa0hNoB0vhaAhHQJ93iRW912d1fZQoaAZHQHARxew9q1xoB0vtaAhHQJ94FXp4bCJ1fZQoaAZHQG+Hs41gpjNoB0vXaAhHQJ941nBciW51fZQoaAZHQHD/2S+xnnNoB00AAWgIR0CfeeHVf/m1dX2UKGgGR0BvsZFEy+HraAdL3mgIR0CfennEl3QldX2UKGgGR0BzKOvmozeoaAdL7mgIR0CferKUVzp5dX2UKGgGR0B0Gq7Dl5nlaAdLx2gIR0Cfeu6LwWnCdX2UKGgGR0BxASOmzjWDaAdL5WgIR0Cfe27JnxrjdX2UKGgGR0Bxc4smOU+taAdL9WgIR0Cfe25YYBNmdX2UKGgGR0BzH/kCFK02aAdL7GgIR0Cfe6K0lZ5idX2UKGgGR0BUvFCCz1K5aAdLk2gIR0Cfe50K7ZnMdX2UKGgGR0Bwl1iF0xM4aAdL7WgIR0Cfe86eGwiadX2UKGgGR0BwDxz6rNnoaAdL/2gIR0CffAKqXF98dX2UKGgGR0BvgwvHtF8YaAdL/WgIR0CffAL7oB7vdX2UKGgGR0BtjMByS3b3aAdL32gIR0CffCpLmITHdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe76cf1290dedb8bbdb80cc4bc4a112a759ab0bb20ac8b32e612da8c09e5c3b3
3
- size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c1fcb0f61bb9208790bfee421677459e4d9a03c4f5b2a3e5cd6bf257c85c4cd
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4168a9e98cb1286bf64c89ccd14a9c3c8f7b83288ff08fd743a9320c4424e1c6
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:607d39274d8e5e92eac470f7738cda44213c73ca90a7187076d56dcc0a7758ee
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,4 +1,4 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
  - Python: 3.10.11
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.0+cu118
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
  - Python: 3.10.11
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.0+cu118
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": 85.2315770074154, "std_reward": 68.57322870026267, "n_evaluation_episodes": 10, "eval_datetime": "2023-05-17T23:20:25.457980"}
 
1
+ {"mean_reward": 282.10544637029864, "std_reward": 19.133359785636237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T10:58:40.491182"}