andrewljohnson
commited on
Commit
·
9eedb9a
1
Parent(s):
1e6b9b8
update model card README.md
Browse files
README.md
CHANGED
@@ -16,16 +16,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Mean Iou: 0.
|
21 |
-
- Mean Accuracy: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
- Accuracy Unlabeled: nan
|
24 |
-
- Accuracy Front: 0.
|
25 |
-
- Accuracy Back: 0.
|
26 |
- Iou Unlabeled: 0.0
|
27 |
-
- Iou Front: 0.
|
28 |
-
- Iou Back: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -45,19 +45,30 @@ More information needed
|
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
- learning_rate: 6e-05
|
48 |
-
- train_batch_size:
|
49 |
-
- eval_batch_size:
|
50 |
- seed: 42
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- num_epochs:
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2096
|
20 |
+
- Mean Iou: 0.6629
|
21 |
+
- Mean Accuracy: 0.9944
|
22 |
+
- Overall Accuracy: 0.9944
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Front: 0.9997
|
25 |
+
- Accuracy Back: 0.9891
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Front: 0.9997
|
28 |
+
- Iou Back: 0.9891
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
- learning_rate: 6e-05
|
48 |
+
- train_batch_size: 1
|
49 |
+
- eval_batch_size: 1
|
50 |
- seed: 42
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
|
59 |
+
| 0.496 | 0.74 | 20 | 0.4441 | 0.6552 | 0.9838 | 0.9838 | nan | 0.9786 | 0.9890 | 0.0 | 0.9786 | 0.9869 |
|
60 |
+
| 0.1693 | 1.48 | 40 | 0.4098 | 0.6597 | 0.9897 | 0.9897 | nan | 0.9943 | 0.9851 | 0.0 | 0.9943 | 0.9849 |
|
61 |
+
| 0.1172 | 2.22 | 60 | 0.2734 | 0.6582 | 0.9874 | 0.9874 | nan | 0.9977 | 0.9770 | 0.0 | 0.9977 | 0.9770 |
|
62 |
+
| 0.1335 | 2.96 | 80 | 0.2637 | 0.6609 | 0.9914 | 0.9914 | nan | 0.9959 | 0.9869 | 0.0 | 0.9959 | 0.9869 |
|
63 |
+
| 0.0781 | 3.7 | 100 | 0.5178 | 0.6644 | 0.9966 | 0.9966 | nan | 0.9998 | 0.9933 | 0.0 | 0.9998 | 0.9933 |
|
64 |
+
| 0.1302 | 4.44 | 120 | 0.2753 | 0.6652 | 0.9978 | 0.9978 | nan | 0.9993 | 0.9962 | 0.0 | 0.9993 | 0.9962 |
|
65 |
+
| 0.0688 | 5.19 | 140 | 0.1458 | 0.6618 | 0.9926 | 0.9926 | nan | 0.9950 | 0.9903 | 0.0 | 0.9950 | 0.9903 |
|
66 |
+
| 0.0866 | 5.93 | 160 | 0.1763 | 0.6636 | 0.9954 | 0.9954 | nan | 0.9962 | 0.9946 | 0.0 | 0.9962 | 0.9946 |
|
67 |
+
| 0.0525 | 6.67 | 180 | 0.1812 | 0.6627 | 0.9941 | 0.9941 | nan | 0.9988 | 0.9895 | 0.0 | 0.9988 | 0.9895 |
|
68 |
+
| 0.0679 | 7.41 | 200 | 0.2246 | 0.6625 | 0.9937 | 0.9937 | nan | 0.9990 | 0.9884 | 0.0 | 0.9990 | 0.9884 |
|
69 |
+
| 0.0424 | 8.15 | 220 | 0.2079 | 0.6623 | 0.9934 | 0.9935 | nan | 0.9996 | 0.9873 | 0.0 | 0.9996 | 0.9873 |
|
70 |
+
| 0.0349 | 8.89 | 240 | 0.1559 | 0.6626 | 0.9939 | 0.9940 | nan | 0.9987 | 0.9892 | 0.0 | 0.9987 | 0.9892 |
|
71 |
+
| 0.0357 | 9.63 | 260 | 0.2096 | 0.6629 | 0.9944 | 0.9944 | nan | 0.9997 | 0.9891 | 0.0 | 0.9997 | 0.9891 |
|
72 |
|
73 |
|
74 |
### Framework versions
|