andrewljohnson commited on
Commit
9eedb9a
·
1 Parent(s): 1e6b9b8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -13
README.md CHANGED
@@ -16,16 +16,16 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.1361
20
- - Mean Iou: 0.6485
21
- - Mean Accuracy: 0.9729
22
- - Overall Accuracy: 0.9729
23
  - Accuracy Unlabeled: nan
24
- - Accuracy Front: 0.9744
25
- - Accuracy Back: 0.9714
26
  - Iou Unlabeled: 0.0
27
- - Iou Front: 0.9742
28
- - Iou Back: 0.9714
29
 
30
  ## Model description
31
 
@@ -45,19 +45,30 @@ More information needed
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 6e-05
48
- - train_batch_size: 2
49
- - eval_batch_size: 2
50
  - seed: 42
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
- - num_epochs: 5
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
59
- | 0.3743 | 2.5 | 20 | 0.2551 | 0.6392 | 0.9721 | 0.9720 | nan | 0.9839 | 0.9603 | 0.0 | 0.9574 | 0.9603 |
60
- | 0.1906 | 5.0 | 40 | 0.1361 | 0.6485 | 0.9729 | 0.9729 | nan | 0.9744 | 0.9714 | 0.0 | 0.9742 | 0.9714 |
 
 
 
 
 
 
 
 
 
 
 
61
 
62
 
63
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.2096
20
+ - Mean Iou: 0.6629
21
+ - Mean Accuracy: 0.9944
22
+ - Overall Accuracy: 0.9944
23
  - Accuracy Unlabeled: nan
24
+ - Accuracy Front: 0.9997
25
+ - Accuracy Back: 0.9891
26
  - Iou Unlabeled: 0.0
27
+ - Iou Front: 0.9997
28
+ - Iou Back: 0.9891
29
 
30
  ## Model description
31
 
 
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 6e-05
48
+ - train_batch_size: 1
49
+ - eval_batch_size: 1
50
  - seed: 42
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
59
+ | 0.496 | 0.74 | 20 | 0.4441 | 0.6552 | 0.9838 | 0.9838 | nan | 0.9786 | 0.9890 | 0.0 | 0.9786 | 0.9869 |
60
+ | 0.1693 | 1.48 | 40 | 0.4098 | 0.6597 | 0.9897 | 0.9897 | nan | 0.9943 | 0.9851 | 0.0 | 0.9943 | 0.9849 |
61
+ | 0.1172 | 2.22 | 60 | 0.2734 | 0.6582 | 0.9874 | 0.9874 | nan | 0.9977 | 0.9770 | 0.0 | 0.9977 | 0.9770 |
62
+ | 0.1335 | 2.96 | 80 | 0.2637 | 0.6609 | 0.9914 | 0.9914 | nan | 0.9959 | 0.9869 | 0.0 | 0.9959 | 0.9869 |
63
+ | 0.0781 | 3.7 | 100 | 0.5178 | 0.6644 | 0.9966 | 0.9966 | nan | 0.9998 | 0.9933 | 0.0 | 0.9998 | 0.9933 |
64
+ | 0.1302 | 4.44 | 120 | 0.2753 | 0.6652 | 0.9978 | 0.9978 | nan | 0.9993 | 0.9962 | 0.0 | 0.9993 | 0.9962 |
65
+ | 0.0688 | 5.19 | 140 | 0.1458 | 0.6618 | 0.9926 | 0.9926 | nan | 0.9950 | 0.9903 | 0.0 | 0.9950 | 0.9903 |
66
+ | 0.0866 | 5.93 | 160 | 0.1763 | 0.6636 | 0.9954 | 0.9954 | nan | 0.9962 | 0.9946 | 0.0 | 0.9962 | 0.9946 |
67
+ | 0.0525 | 6.67 | 180 | 0.1812 | 0.6627 | 0.9941 | 0.9941 | nan | 0.9988 | 0.9895 | 0.0 | 0.9988 | 0.9895 |
68
+ | 0.0679 | 7.41 | 200 | 0.2246 | 0.6625 | 0.9937 | 0.9937 | nan | 0.9990 | 0.9884 | 0.0 | 0.9990 | 0.9884 |
69
+ | 0.0424 | 8.15 | 220 | 0.2079 | 0.6623 | 0.9934 | 0.9935 | nan | 0.9996 | 0.9873 | 0.0 | 0.9996 | 0.9873 |
70
+ | 0.0349 | 8.89 | 240 | 0.1559 | 0.6626 | 0.9939 | 0.9940 | nan | 0.9987 | 0.9892 | 0.0 | 0.9987 | 0.9892 |
71
+ | 0.0357 | 9.63 | 260 | 0.2096 | 0.6629 | 0.9944 | 0.9944 | nan | 0.9997 | 0.9891 | 0.0 | 0.9997 | 0.9891 |
72
 
73
 
74
  ### Framework versions