|
import sys |
|
import os |
|
from os.path import join as pjoin |
|
|
|
import torch |
|
from models.vq.model import RVQVAE |
|
from options.vq_option import arg_parse |
|
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader |
|
import utils.eval_t2m as eval_t2m |
|
from utils.get_opt import get_opt |
|
from models.t2m_eval_wrapper import EvaluatorModelWrapper |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
import numpy as np |
|
from utils.word_vectorizer import WordVectorizer |
|
|
|
def load_vq_model(vq_opt, which_epoch): |
|
|
|
|
|
vq_model = RVQVAE(vq_opt, |
|
dim_pose, |
|
vq_opt.nb_code, |
|
vq_opt.code_dim, |
|
vq_opt.code_dim, |
|
vq_opt.down_t, |
|
vq_opt.stride_t, |
|
vq_opt.width, |
|
vq_opt.depth, |
|
vq_opt.dilation_growth_rate, |
|
vq_opt.vq_act, |
|
vq_opt.vq_norm) |
|
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', which_epoch), |
|
map_location='cpu') |
|
model_key = 'vq_model' if 'vq_model' in ckpt else 'net' |
|
vq_model.load_state_dict(ckpt[model_key]) |
|
vq_epoch = ckpt['ep'] if 'ep' in ckpt else -1 |
|
print(f'Loading VQ Model {vq_opt.name} Completed!, Epoch {vq_epoch}') |
|
return vq_model, vq_epoch |
|
|
|
if __name__ == "__main__": |
|
|
|
args = arg_parse(False) |
|
args.device = torch.device("cpu" if args.gpu_id == -1 else "cuda:" + str(args.gpu_id)) |
|
|
|
args.out_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'eval') |
|
os.makedirs(args.out_dir, exist_ok=True) |
|
|
|
f = open(pjoin(args.out_dir, '%s.log'%args.ext), 'w') |
|
|
|
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataset_name == 'kit' \ |
|
else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' |
|
|
|
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) |
|
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) |
|
|
|
|
|
args.nb_joints = 21 if args.dataset_name == 'kit' else 22 |
|
dim_pose = 251 if args.dataset_name == 'kit' else 263 |
|
|
|
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=args.device) |
|
|
|
print(len(eval_val_loader)) |
|
|
|
|
|
vq_opt_path = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'opt.txt') |
|
vq_opt = get_opt(vq_opt_path, device=args.device) |
|
|
|
|
|
model_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'model') |
|
for file in os.listdir(model_dir): |
|
|
|
|
|
|
|
|
|
if args.which_epoch != "all" and args.which_epoch not in file: |
|
continue |
|
print(file) |
|
net, ep = load_vq_model(vq_opt, file) |
|
|
|
net.eval() |
|
net.cuda() |
|
|
|
fid = [] |
|
div = [] |
|
top1 = [] |
|
top2 = [] |
|
top3 = [] |
|
matching = [] |
|
mae = [] |
|
repeat_time = 20 |
|
for i in range(repeat_time): |
|
best_fid, best_div, Rprecision, best_matching, l1_dist = \ |
|
eval_t2m.evaluation_vqvae_plus_mpjpe(eval_val_loader, net, i, eval_wrapper=eval_wrapper, num_joint=args.nb_joints) |
|
fid.append(best_fid) |
|
div.append(best_div) |
|
top1.append(Rprecision[0]) |
|
top2.append(Rprecision[1]) |
|
top3.append(Rprecision[2]) |
|
matching.append(best_matching) |
|
mae.append(l1_dist) |
|
|
|
fid = np.array(fid) |
|
div = np.array(div) |
|
top1 = np.array(top1) |
|
top2 = np.array(top2) |
|
top3 = np.array(top3) |
|
matching = np.array(matching) |
|
mae = np.array(mae) |
|
|
|
print(f'{file} final result, epoch {ep}') |
|
print(f'{file} final result, epoch {ep}', file=f, flush=True) |
|
|
|
msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tMAE:{np.mean(mae):.3f}, conf.{np.std(mae)*1.96/np.sqrt(repeat_time):.3f}\n\n" |
|
|
|
print(msg_final) |
|
print(msg_final, file=f, flush=True) |
|
|
|
f.close() |
|
|
|
|