|
import os |
|
from os.path import join as pjoin |
|
|
|
import torch |
|
|
|
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer |
|
from models.vq.model import RVQVAE |
|
|
|
from options.eval_option import EvalT2MOptions |
|
from utils.get_opt import get_opt |
|
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader |
|
from models.t2m_eval_wrapper import EvaluatorModelWrapper |
|
|
|
import utils.eval_t2m as eval_t2m |
|
from utils.fixseed import fixseed |
|
|
|
import numpy as np |
|
|
|
def load_vq_model(vq_opt): |
|
|
|
vq_model = RVQVAE(vq_opt, |
|
dim_pose, |
|
vq_opt.nb_code, |
|
vq_opt.code_dim, |
|
vq_opt.output_emb_width, |
|
vq_opt.down_t, |
|
vq_opt.stride_t, |
|
vq_opt.width, |
|
vq_opt.depth, |
|
vq_opt.dilation_growth_rate, |
|
vq_opt.vq_act, |
|
vq_opt.vq_norm) |
|
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'), |
|
map_location=opt.device) |
|
model_key = 'vq_model' if 'vq_model' in ckpt else 'net' |
|
vq_model.load_state_dict(ckpt[model_key]) |
|
print(f'Loading VQ Model {vq_opt.name} Completed!') |
|
return vq_model, vq_opt |
|
|
|
def load_trans_model(model_opt, which_model): |
|
t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim, |
|
cond_mode='text', |
|
latent_dim=model_opt.latent_dim, |
|
ff_size=model_opt.ff_size, |
|
num_layers=model_opt.n_layers, |
|
num_heads=model_opt.n_heads, |
|
dropout=model_opt.dropout, |
|
clip_dim=512, |
|
cond_drop_prob=model_opt.cond_drop_prob, |
|
clip_version=clip_version, |
|
opt=model_opt) |
|
ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model), |
|
map_location=opt.device) |
|
model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans' |
|
|
|
missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False) |
|
assert len(unexpected_keys) == 0 |
|
assert all([k.startswith('clip_model.') for k in missing_keys]) |
|
print(f'Loading Mask Transformer {opt.name} from epoch {ckpt["ep"]}!') |
|
return t2m_transformer |
|
|
|
def load_res_model(res_opt): |
|
res_opt.num_quantizers = vq_opt.num_quantizers |
|
res_opt.num_tokens = vq_opt.nb_code |
|
res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim, |
|
cond_mode='text', |
|
latent_dim=res_opt.latent_dim, |
|
ff_size=res_opt.ff_size, |
|
num_layers=res_opt.n_layers, |
|
num_heads=res_opt.n_heads, |
|
dropout=res_opt.dropout, |
|
clip_dim=512, |
|
shared_codebook=vq_opt.shared_codebook, |
|
cond_drop_prob=res_opt.cond_drop_prob, |
|
|
|
share_weight=res_opt.share_weight, |
|
clip_version=clip_version, |
|
opt=res_opt) |
|
|
|
ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'), |
|
map_location=opt.device) |
|
missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False) |
|
assert len(unexpected_keys) == 0 |
|
assert all([k.startswith('clip_model.') for k in missing_keys]) |
|
print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!') |
|
return res_transformer |
|
|
|
if __name__ == '__main__': |
|
parser = EvalT2MOptions() |
|
opt = parser.parse() |
|
fixseed(opt.seed) |
|
|
|
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id)) |
|
torch.autograd.set_detect_anomaly(True) |
|
|
|
dim_pose = 251 if opt.dataset_name == 'kit' else 263 |
|
|
|
|
|
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name) |
|
model_dir = pjoin(root_dir, 'model') |
|
out_dir = pjoin(root_dir, 'eval') |
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
out_path = pjoin(out_dir, "%s.log"%opt.ext) |
|
|
|
f = open(pjoin(out_path), 'w') |
|
|
|
model_opt_path = pjoin(root_dir, 'opt.txt') |
|
model_opt = get_opt(model_opt_path, device=opt.device) |
|
clip_version = 'ViT-B/32' |
|
|
|
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt') |
|
vq_opt = get_opt(vq_opt_path, device=opt.device) |
|
vq_model, vq_opt = load_vq_model(vq_opt) |
|
|
|
model_opt.num_tokens = vq_opt.nb_code |
|
model_opt.num_quantizers = vq_opt.num_quantizers |
|
model_opt.code_dim = vq_opt.code_dim |
|
|
|
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt') |
|
res_opt = get_opt(res_opt_path, device=opt.device) |
|
res_model = load_res_model(res_opt) |
|
|
|
assert res_opt.vq_name == model_opt.vq_name |
|
|
|
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if opt.dataset_name == 'kit' \ |
|
else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' |
|
|
|
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) |
|
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) |
|
|
|
|
|
opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22 |
|
|
|
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device) |
|
|
|
|
|
for file in os.listdir(model_dir): |
|
if opt.which_epoch != "all" and opt.which_epoch not in file: |
|
continue |
|
print('loading checkpoint {}'.format(file)) |
|
t2m_transformer = load_trans_model(model_opt, file) |
|
t2m_transformer.eval() |
|
vq_model.eval() |
|
res_model.eval() |
|
|
|
t2m_transformer.to(opt.device) |
|
vq_model.to(opt.device) |
|
res_model.to(opt.device) |
|
|
|
fid = [] |
|
div = [] |
|
top1 = [] |
|
top2 = [] |
|
top3 = [] |
|
matching = [] |
|
mm = [] |
|
|
|
repeat_time = 20 |
|
for i in range(repeat_time): |
|
with torch.no_grad(): |
|
best_fid, best_div, Rprecision, best_matching, best_mm = \ |
|
eval_t2m.evaluation_mask_transformer_test_plus_res(eval_val_loader, vq_model, res_model, t2m_transformer, |
|
i, eval_wrapper=eval_wrapper, |
|
time_steps=opt.time_steps, cond_scale=opt.cond_scale, |
|
temperature=opt.temperature, topkr=opt.topkr, |
|
force_mask=opt.force_mask, cal_mm=True) |
|
fid.append(best_fid) |
|
div.append(best_div) |
|
top1.append(Rprecision[0]) |
|
top2.append(Rprecision[1]) |
|
top3.append(Rprecision[2]) |
|
matching.append(best_matching) |
|
mm.append(best_mm) |
|
|
|
fid = np.array(fid) |
|
div = np.array(div) |
|
top1 = np.array(top1) |
|
top2 = np.array(top2) |
|
top3 = np.array(top3) |
|
matching = np.array(matching) |
|
mm = np.array(mm) |
|
|
|
print(f'{file} final result:') |
|
print(f'{file} final result:', file=f, flush=True) |
|
|
|
msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1) * 1.96 / np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2) * 1.96 / np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ |
|
f"\tMultimodality:{np.mean(mm):.3f}, conf.{np.std(mm) * 1.96 / np.sqrt(repeat_time):.3f}\n\n" |
|
|
|
print(msg_final) |
|
print(msg_final, file=f, flush=True) |
|
|
|
f.close() |
|
|
|
|
|
|