andrewatef's picture
Upload folder using huggingface_hub
823807d verified
raw
history blame
6.24 kB
import torch
import numpy as np
import argparse
import pickle
import smplx
from utils import bvh, quat
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="./visualization/data/smpl/")
parser.add_argument("--model_type", type=str, default="smpl", choices=["smpl", "smplx"])
parser.add_argument("--gender", type=str, default="MALE", choices=["MALE", "FEMALE", "NEUTRAL"])
parser.add_argument("--num_betas", type=int, default=10, choices=[10, 300])
parser.add_argument("--poses", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.pkl")
parser.add_argument("--fps", type=int, default=60)
parser.add_argument("--output", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.bvh")
parser.add_argument("--mirror", action="store_true")
return parser.parse_args()
def mirror_rot_trans(lrot, trans, names, parents):
joints_mirror = np.array([(
names.index("Left"+n[5:]) if n.startswith("Right") else (
names.index("Right"+n[4:]) if n.startswith("Left") else
names.index(n))) for n in names])
mirror_pos = np.array([-1, 1, 1])
mirror_rot = np.array([1, 1, -1, -1])
grot = quat.fk_rot(lrot, parents)
trans_mirror = mirror_pos * trans
grot_mirror = mirror_rot * grot[:,joints_mirror]
return quat.ik_rot(grot_mirror, parents), trans_mirror
def smpl2bvh(model_path:str, poses:str, output:str, mirror:bool,
model_type="smpl", gender="MALE",
num_betas=10, fps=60) -> None:
"""Save bvh file created by smpl parameters.
Args:
model_path (str): Path to smpl models.
poses (str): Path to npz or pkl file.
output (str): Where to save bvh.
mirror (bool): Whether save mirror motion or not.
model_type (str, optional): I prepared "smpl" only. Defaults to "smpl".
gender (str, optional): Gender Information. Defaults to "MALE".
num_betas (int, optional): How many pca parameters to use in SMPL. Defaults to 10.
fps (int, optional): Frame per second. Defaults to 30.
"""
# names = [
# "Pelvis",
# "Left_hip",
# "Right_hip",
# "Spine1",
# "Left_knee",
# "Right_knee",
# "Spine2",
# "Left_ankle",
# "Right_ankle",
# "Spine3",
# "Left_foot",
# "Right_foot",
# "Neck",
# "Left_collar",
# "Right_collar",
# "Head",
# "Left_shoulder",
# "Right_shoulder",
# "Left_elbow",
# "Right_elbow",
# "Left_wrist",
# "Right_wrist",
# "Left_palm",
# "Right_palm",
# ]
names = [
"Hips",
"LeftUpLeg",
"RightUpLeg",
"Spine",
"LeftLeg",
"RightLeg",
"Spine1",
"LeftFoot",
"RightFoot",
"Spine2",
"LeftToe",
"RightToe",
"Neck",
"LeftShoulder",
"RightShoulder",
"Head",
"LeftArm",
"RightArm",
"LeftForeArm",
"RightForeArm",
"LeftHand",
"RightHand",
"LeftThumb",
"RightThumb",
]
# I prepared smpl models only,
# but I will release for smplx models recently.
model = smplx.create(model_path=model_path,
model_type=model_type,
gender=gender,
batch_size=1)
parents = model.parents.detach().cpu().numpy()
# You can define betas like this.(default betas are 0 at all.)
rest = model(
# betas = torch.randn([1, num_betas], dtype=torch.float32)
)
rest_pose = rest.joints.detach().cpu().numpy().squeeze()[:24,:]
root_offset = rest_pose[0]
offsets = rest_pose - rest_pose[parents]
offsets[0] = root_offset
offsets *= 1
scaling = None
# Pose setting.
if poses.endswith(".npz"):
poses = np.load(poses)
rots = np.squeeze(poses["poses"], axis=0) # (N, 24, 3)
trans = np.squeeze(poses["trans"], axis=0) # (N, 3)
elif poses.endswith(".pkl"):
with open(poses, "rb") as f:
poses = pickle.load(f)
rots = poses["smpl_poses"] # (N, 72)
rots = rots.reshape(rots.shape[0], -1, 3) # (N, 24, 3)
scaling = poses["smpl_scaling"] # (1,)
trans = poses["smpl_trans"] # (N, 3)
else:
raise Exception("This file type is not supported!")
if scaling is not None:
trans /= scaling
# to quaternion
rots = quat.from_axis_angle(rots)
order = "zyx"
pos = offsets[None].repeat(len(rots), axis=0)
positions = pos.copy()
# positions[:,0] += trans * 10
positions[:, 0] += trans
rotations = np.degrees(quat.to_euler(rots, order=order))
bvh_data ={
"rotations": rotations[:, :22],
"positions": positions[:, :22],
"offsets": offsets[:22],
"parents": parents[:22],
"names": names[:22],
"order": order,
"frametime": 1 / fps,
}
if not output.endswith(".bvh"):
output = output + ".bvh"
bvh.save(output, bvh_data)
if mirror:
rots_mirror, trans_mirror = mirror_rot_trans(
rots, trans, names, parents)
positions_mirror = pos.copy()
positions_mirror[:,0] += trans_mirror
rotations_mirror = np.degrees(
quat.to_euler(rots_mirror, order=order))
bvh_data ={
"rotations": rotations_mirror,
"positions": positions_mirror,
"offsets": offsets,
"parents": parents,
"names": names,
"order": order,
"frametime": 1 / fps,
}
output_mirror = output.split(".")[0] + "_mirror.bvh"
bvh.save(output_mirror, bvh_data)
def joints2bvh()
if __name__ == "__main__":
args = parse_args()
smpl2bvh(model_path=args.model_path, model_type=args.model_type,
mirror = args.mirror, gender=args.gender,
poses=args.poses, num_betas=args.num_betas,
fps=args.fps, output=args.output)
print("finished!")