|
import numpy as np |
|
|
|
|
|
class Quaternions: |
|
""" |
|
Quaternions is a wrapper around a numpy ndarray |
|
that allows it to act as if it were an narray of |
|
a quater data type. |
|
|
|
Therefore addition, subtraction, multiplication, |
|
division, negation, absolute, are all defined |
|
in terms of quater operations such as quater |
|
multiplication. |
|
|
|
This allows for much neater code and many routines |
|
which conceptually do the same thing to be written |
|
in the same way for point data and for rotation data. |
|
|
|
The Quaternions class has been desgined such that it |
|
should support broadcasting and slicing in all of the |
|
usual ways. |
|
""" |
|
|
|
def __init__(self, qs): |
|
if isinstance(qs, np.ndarray): |
|
if len(qs.shape) == 1: qs = np.array([qs]) |
|
self.qs = qs |
|
return |
|
|
|
if isinstance(qs, Quaternions): |
|
self.qs = qs |
|
return |
|
|
|
raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs)) |
|
|
|
def __str__(self): |
|
return "Quaternions(" + str(self.qs) + ")" |
|
|
|
def __repr__(self): |
|
return "Quaternions(" + repr(self.qs) + ")" |
|
|
|
""" Helper Methods for Broadcasting and Data extraction """ |
|
|
|
@classmethod |
|
def _broadcast(cls, sqs, oqs, scalar=False): |
|
if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1]) |
|
|
|
ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1]) |
|
os = np.array(oqs.shape) |
|
|
|
if len(ss) != len(os): |
|
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape)) |
|
|
|
if np.all(ss == os): return sqs, oqs |
|
|
|
if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))): |
|
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape)) |
|
|
|
sqsn, oqsn = sqs.copy(), oqs.copy() |
|
|
|
for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a) |
|
for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a) |
|
|
|
return sqsn, oqsn |
|
|
|
""" Adding Quaterions is just Defined as Multiplication """ |
|
|
|
def __add__(self, other): |
|
return self * other |
|
|
|
def __sub__(self, other): |
|
return self / other |
|
|
|
""" Quaterion Multiplication """ |
|
|
|
def __mul__(self, other): |
|
""" |
|
Quaternion multiplication has three main methods. |
|
|
|
When multiplying a Quaternions array by Quaternions |
|
normal quater multiplication is performed. |
|
|
|
When multiplying a Quaternions array by a vector |
|
array of the same shape, where the last axis is 3, |
|
it is assumed to be a Quaternion by 3D-Vector |
|
multiplication and the 3D-Vectors are rotated |
|
in space by the Quaternions. |
|
|
|
When multipplying a Quaternions array by a scalar |
|
or vector of different shape it is assumed to be |
|
a Quaternions by Scalars multiplication and the |
|
Quaternions are scaled using Slerp and the identity |
|
quaternions. |
|
""" |
|
|
|
""" If Quaternions type do Quaternions * Quaternions """ |
|
if isinstance(other, Quaternions): |
|
sqs, oqs = Quaternions._broadcast(self.qs, other.qs) |
|
|
|
q0 = sqs[..., 0]; |
|
q1 = sqs[..., 1]; |
|
q2 = sqs[..., 2]; |
|
q3 = sqs[..., 3]; |
|
r0 = oqs[..., 0]; |
|
r1 = oqs[..., 1]; |
|
r2 = oqs[..., 2]; |
|
r3 = oqs[..., 3]; |
|
|
|
qs = np.empty(sqs.shape) |
|
qs[..., 0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3 |
|
qs[..., 1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2 |
|
qs[..., 2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1 |
|
qs[..., 3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0 |
|
|
|
return Quaternions(qs) |
|
|
|
""" If array type do Quaternions * Vectors """ |
|
if isinstance(other, np.ndarray) and other.shape[-1] == 3: |
|
vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1)) |
|
|
|
return (self * (vs * -self)).imaginaries |
|
|
|
""" If float do Quaternions * Scalars """ |
|
if isinstance(other, np.ndarray) or isinstance(other, float): |
|
return Quaternions.slerp(Quaternions.id_like(self), self, other) |
|
|
|
raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other))) |
|
|
|
def __div__(self, other): |
|
""" |
|
When a Quaternion type is supplied, division is defined |
|
as multiplication by the inverse of that Quaternion. |
|
|
|
When a scalar or vector is supplied it is defined |
|
as multiplicaion of one over the supplied value. |
|
Essentially a scaling. |
|
""" |
|
|
|
if isinstance(other, Quaternions): return self * (-other) |
|
if isinstance(other, np.ndarray): return self * (1.0 / other) |
|
if isinstance(other, float): return self * (1.0 / other) |
|
raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other))) |
|
|
|
def __eq__(self, other): |
|
return self.qs == other.qs |
|
|
|
def __ne__(self, other): |
|
return self.qs != other.qs |
|
|
|
def __neg__(self): |
|
""" Invert Quaternions """ |
|
return Quaternions(self.qs * np.array([[1, -1, -1, -1]])) |
|
|
|
def __abs__(self): |
|
""" Unify Quaternions To Single Pole """ |
|
qabs = self.normalized().copy() |
|
top = np.sum((qabs.qs) * np.array([1, 0, 0, 0]), axis=-1) |
|
bot = np.sum((-qabs.qs) * np.array([1, 0, 0, 0]), axis=-1) |
|
qabs.qs[top < bot] = -qabs.qs[top < bot] |
|
return qabs |
|
|
|
def __iter__(self): |
|
return iter(self.qs) |
|
|
|
def __len__(self): |
|
return len(self.qs) |
|
|
|
def __getitem__(self, k): |
|
return Quaternions(self.qs[k]) |
|
|
|
def __setitem__(self, k, v): |
|
self.qs[k] = v.qs |
|
|
|
@property |
|
def lengths(self): |
|
return np.sum(self.qs ** 2.0, axis=-1) ** 0.5 |
|
|
|
@property |
|
def reals(self): |
|
return self.qs[..., 0] |
|
|
|
@property |
|
def imaginaries(self): |
|
return self.qs[..., 1:4] |
|
|
|
@property |
|
def shape(self): |
|
return self.qs.shape[:-1] |
|
|
|
def repeat(self, n, **kwargs): |
|
return Quaternions(self.qs.repeat(n, **kwargs)) |
|
|
|
def normalized(self): |
|
return Quaternions(self.qs / self.lengths[..., np.newaxis]) |
|
|
|
def log(self): |
|
norm = abs(self.normalized()) |
|
imgs = norm.imaginaries |
|
lens = np.sqrt(np.sum(imgs ** 2, axis=-1)) |
|
lens = np.arctan2(lens, norm.reals) / (lens + 1e-10) |
|
return imgs * lens[..., np.newaxis] |
|
|
|
def constrained(self, axis): |
|
|
|
rl = self.reals |
|
im = np.sum(axis * self.imaginaries, axis=-1) |
|
|
|
t1 = -2 * np.arctan2(rl, im) + np.pi |
|
t2 = -2 * np.arctan2(rl, im) - np.pi |
|
|
|
top = Quaternions.exp(axis[np.newaxis] * (t1[:, np.newaxis] / 2.0)) |
|
bot = Quaternions.exp(axis[np.newaxis] * (t2[:, np.newaxis] / 2.0)) |
|
img = self.dot(top) > self.dot(bot) |
|
|
|
ret = top.copy() |
|
ret[img] = top[img] |
|
ret[~img] = bot[~img] |
|
return ret |
|
|
|
def constrained_x(self): |
|
return self.constrained(np.array([1, 0, 0])) |
|
|
|
def constrained_y(self): |
|
return self.constrained(np.array([0, 1, 0])) |
|
|
|
def constrained_z(self): |
|
return self.constrained(np.array([0, 0, 1])) |
|
|
|
def dot(self, q): |
|
return np.sum(self.qs * q.qs, axis=-1) |
|
|
|
def copy(self): |
|
return Quaternions(np.copy(self.qs)) |
|
|
|
def reshape(self, s): |
|
self.qs.reshape(s) |
|
return self |
|
|
|
def interpolate(self, ws): |
|
return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws)) |
|
|
|
def euler(self, order='xyz'): |
|
|
|
q = self.normalized().qs |
|
q0 = q[..., 0] |
|
q1 = q[..., 1] |
|
q2 = q[..., 2] |
|
q3 = q[..., 3] |
|
es = np.zeros(self.shape + (3,)) |
|
|
|
if order == 'xyz': |
|
es[..., 0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
es[..., 1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1, 1)) |
|
es[..., 2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
elif order == 'yzx': |
|
es[..., 0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0) |
|
es[..., 1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0) |
|
es[..., 2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1, 1)) |
|
else: |
|
raise NotImplementedError('Cannot convert from ordering %s' % order) |
|
|
|
""" |
|
|
|
# These conversion don't appear to work correctly for Maya. |
|
# http://bediyap.com/programming/convert-quaternion-to-euler-rotations/ |
|
|
|
if order == 'xyz': |
|
es[fa + (0,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) |
|
elif order == 'yzx': |
|
es[fa + (0,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) |
|
elif order == 'zxy': |
|
es[fa + (0,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) |
|
elif order == 'xzy': |
|
es[fa + (0,)] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) |
|
elif order == 'yxz': |
|
es[fa + (0,)] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) |
|
elif order == 'zyx': |
|
es[fa + (0,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) |
|
es[fa + (1,)] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1)) |
|
es[fa + (2,)] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) |
|
else: |
|
raise KeyError('Unknown ordering %s' % order) |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
return es |
|
|
|
def average(self): |
|
|
|
if len(self.shape) == 1: |
|
|
|
import numpy.core.umath_tests as ut |
|
system = ut.matrix_multiply(self.qs[:, :, np.newaxis], self.qs[:, np.newaxis, :]).sum(axis=0) |
|
w, v = np.linalg.eigh(system) |
|
qiT_dot_qref = (self.qs[:, :, np.newaxis] * v[np.newaxis, :, :]).sum(axis=1) |
|
return Quaternions(v[:, np.argmin((1. - qiT_dot_qref ** 2).sum(axis=0))]) |
|
|
|
else: |
|
|
|
raise NotImplementedError('Cannot average multi-dimensionsal Quaternions') |
|
|
|
def angle_axis(self): |
|
|
|
norm = self.normalized() |
|
s = np.sqrt(1 - (norm.reals ** 2.0)) |
|
s[s == 0] = 0.001 |
|
|
|
angles = 2.0 * np.arccos(norm.reals) |
|
axis = norm.imaginaries / s[..., np.newaxis] |
|
|
|
return angles, axis |
|
|
|
def transforms(self): |
|
|
|
qw = self.qs[..., 0] |
|
qx = self.qs[..., 1] |
|
qy = self.qs[..., 2] |
|
qz = self.qs[..., 3] |
|
|
|
x2 = qx + qx; |
|
y2 = qy + qy; |
|
z2 = qz + qz; |
|
xx = qx * x2; |
|
yy = qy * y2; |
|
wx = qw * x2; |
|
xy = qx * y2; |
|
yz = qy * z2; |
|
wy = qw * y2; |
|
xz = qx * z2; |
|
zz = qz * z2; |
|
wz = qw * z2; |
|
|
|
m = np.empty(self.shape + (3, 3)) |
|
m[..., 0, 0] = 1.0 - (yy + zz) |
|
m[..., 0, 1] = xy - wz |
|
m[..., 0, 2] = xz + wy |
|
m[..., 1, 0] = xy + wz |
|
m[..., 1, 1] = 1.0 - (xx + zz) |
|
m[..., 1, 2] = yz - wx |
|
m[..., 2, 0] = xz - wy |
|
m[..., 2, 1] = yz + wx |
|
m[..., 2, 2] = 1.0 - (xx + yy) |
|
|
|
return m |
|
|
|
def ravel(self): |
|
return self.qs.ravel() |
|
|
|
@classmethod |
|
def id(cls, n): |
|
|
|
if isinstance(n, tuple): |
|
qs = np.zeros(n + (4,)) |
|
qs[..., 0] = 1.0 |
|
return Quaternions(qs) |
|
|
|
if isinstance(n, int): |
|
qs = np.zeros((n, 4)) |
|
qs[:, 0] = 1.0 |
|
return Quaternions(qs) |
|
|
|
raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n))) |
|
|
|
@classmethod |
|
def id_like(cls, a): |
|
qs = np.zeros(a.shape + (4,)) |
|
qs[..., 0] = 1.0 |
|
return Quaternions(qs) |
|
|
|
@classmethod |
|
def exp(cls, ws): |
|
|
|
ts = np.sum(ws ** 2.0, axis=-1) ** 0.5 |
|
ts[ts == 0] = 0.001 |
|
ls = np.sin(ts) / ts |
|
|
|
qs = np.empty(ws.shape[:-1] + (4,)) |
|
qs[..., 0] = np.cos(ts) |
|
qs[..., 1] = ws[..., 0] * ls |
|
qs[..., 2] = ws[..., 1] * ls |
|
qs[..., 3] = ws[..., 2] * ls |
|
|
|
return Quaternions(qs).normalized() |
|
|
|
@classmethod |
|
def slerp(cls, q0s, q1s, a): |
|
|
|
fst, snd = cls._broadcast(q0s.qs, q1s.qs) |
|
fst, a = cls._broadcast(fst, a, scalar=True) |
|
snd, a = cls._broadcast(snd, a, scalar=True) |
|
|
|
len = np.sum(fst * snd, axis=-1) |
|
|
|
neg = len < 0.0 |
|
len[neg] = -len[neg] |
|
snd[neg] = -snd[neg] |
|
|
|
amount0 = np.zeros(a.shape) |
|
amount1 = np.zeros(a.shape) |
|
|
|
linear = (1.0 - len) < 0.01 |
|
omegas = np.arccos(len[~linear]) |
|
sinoms = np.sin(omegas) |
|
|
|
amount0[linear] = 1.0 - a[linear] |
|
amount1[linear] = a[linear] |
|
amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms |
|
amount1[~linear] = np.sin(a[~linear] * omegas) / sinoms |
|
|
|
return Quaternions( |
|
amount0[..., np.newaxis] * fst + |
|
amount1[..., np.newaxis] * snd) |
|
|
|
@classmethod |
|
def between(cls, v0s, v1s): |
|
a = np.cross(v0s, v1s) |
|
w = np.sqrt((v0s ** 2).sum(axis=-1) * (v1s ** 2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1) |
|
return Quaternions(np.concatenate([w[..., np.newaxis], a], axis=-1)).normalized() |
|
|
|
@classmethod |
|
def from_angle_axis(cls, angles, axis): |
|
axis = axis / (np.sqrt(np.sum(axis ** 2, axis=-1)) + 1e-10)[..., np.newaxis] |
|
sines = np.sin(angles / 2.0)[..., np.newaxis] |
|
cosines = np.cos(angles / 2.0)[..., np.newaxis] |
|
return Quaternions(np.concatenate([cosines, axis * sines], axis=-1)) |
|
|
|
@classmethod |
|
def from_euler(cls, es, order='xyz', world=False): |
|
|
|
axis = { |
|
'x': np.array([1, 0, 0]), |
|
'y': np.array([0, 1, 0]), |
|
'z': np.array([0, 0, 1]), |
|
} |
|
|
|
q0s = Quaternions.from_angle_axis(es[..., 0], axis[order[0]]) |
|
q1s = Quaternions.from_angle_axis(es[..., 1], axis[order[1]]) |
|
q2s = Quaternions.from_angle_axis(es[..., 2], axis[order[2]]) |
|
|
|
return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s)) |
|
|
|
@classmethod |
|
def from_transforms(cls, ts): |
|
|
|
d0, d1, d2 = ts[..., 0, 0], ts[..., 1, 1], ts[..., 2, 2] |
|
|
|
q0 = (d0 + d1 + d2 + 1.0) / 4.0 |
|
q1 = (d0 - d1 - d2 + 1.0) / 4.0 |
|
q2 = (-d0 + d1 - d2 + 1.0) / 4.0 |
|
q3 = (-d0 - d1 + d2 + 1.0) / 4.0 |
|
|
|
q0 = np.sqrt(q0.clip(0, None)) |
|
q1 = np.sqrt(q1.clip(0, None)) |
|
q2 = np.sqrt(q2.clip(0, None)) |
|
q3 = np.sqrt(q3.clip(0, None)) |
|
|
|
c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3) |
|
c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3) |
|
c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3) |
|
c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2) |
|
|
|
q1[c0] *= np.sign(ts[c0, 2, 1] - ts[c0, 1, 2]) |
|
q2[c0] *= np.sign(ts[c0, 0, 2] - ts[c0, 2, 0]) |
|
q3[c0] *= np.sign(ts[c0, 1, 0] - ts[c0, 0, 1]) |
|
|
|
q0[c1] *= np.sign(ts[c1, 2, 1] - ts[c1, 1, 2]) |
|
q2[c1] *= np.sign(ts[c1, 1, 0] + ts[c1, 0, 1]) |
|
q3[c1] *= np.sign(ts[c1, 0, 2] + ts[c1, 2, 0]) |
|
|
|
q0[c2] *= np.sign(ts[c2, 0, 2] - ts[c2, 2, 0]) |
|
q1[c2] *= np.sign(ts[c2, 1, 0] + ts[c2, 0, 1]) |
|
q3[c2] *= np.sign(ts[c2, 2, 1] + ts[c2, 1, 2]) |
|
|
|
q0[c3] *= np.sign(ts[c3, 1, 0] - ts[c3, 0, 1]) |
|
q1[c3] *= np.sign(ts[c3, 2, 0] + ts[c3, 0, 2]) |
|
q2[c3] *= np.sign(ts[c3, 2, 1] + ts[c3, 1, 2]) |
|
|
|
qs = np.empty(ts.shape[:-2] + (4,)) |
|
qs[..., 0] = q0 |
|
qs[..., 1] = q1 |
|
qs[..., 2] = q2 |
|
qs[..., 3] = q3 |
|
|
|
return cls(qs) |