andrei-saceleanu
commited on
Commit
•
184f91d
1
Parent(s):
d8bab51
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1919.28 +/- 410.68
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02b92e1b40e252e743098485e7ee23f1c4bc1e7e350de66bd7c763eb5d7ac667
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdfc616dee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdfc616df70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdfc6171040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdfc61710d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdfc6171160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdfc61711f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdfc6171280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdfc6171310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdfc61713a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdfc6171430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdfc61714c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdfc6171550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fdfc616c450>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673970799973206067,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIy0Pz639q2+4/fCPs98lz+/p42+ckamPn4GaD9hheU8A8MgPwSAMz6QdkY/9S6Mv1nIZr8giJc/XICLv/N8Cz+alF6+LrQmPwd/Ez+2NxC/mbMEvrqJw75fSeO9v7QUPwhydT+buuE+OsYRPxnBhb+99Ms+2eiTP8za7Lp1tJo/RCTUP4a65L2+KgU+pr9EvyNOOj/fL5m8I6Q6PhMwbb6pdJQ/RxnBP2g8HD/AX/I/T7+rPy+HCEAuqSY/IvZRPx1PML9TWz++Go8/P4ENdD4UgYW/m7rhPirJ4L+N/HQ/45c8vwl7kT5oU8g+lqFMP6BBXz8RohM/s5SvvjZWsb67GPW+xFnEvrR4IL8fYXE/LEU+P5JUDj5K24c/Rn4vvyZAXT9bYSe/5ux/Po3qaD1wSTy/zlu4PjYyNz5SV/u9FIGFv5u64T46xhE/jfx0PwyKuz257Am/V9GnPg0dbT85EEu/hsOfP75IBD/EwM++xd6YvmshPz8ZwHU/W6ZqPqVEjr87eSPAR0KpvspEur9z0Fy/5RJUv9PkOj8wD42+8tolvx/fdz5WL0a/CrLuOwhydT9OKhHAOsYRPxnBhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADQM+u0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATg6ivQAAAACO6v6/AAAAAADQtb0AAAAAtPnjPwAAAADKK3S9AAAAAGvz7j8AAAAASgE8vQAAAADnYvS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcwLlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHFps70AAAAAmvTdvwAAAADJ8NY9AAAAAD6Q7T8AAAAAfmSYPQAAAAClPO8/AAAAABjyuLwAAAAAtt7/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMswhrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAx7yQ9AAAAAG2n3L8AAAAAZS6jPQAAAABux9s/AAAAADf7Oz0AAAAAdmHvPwAAAAC528c9AAAAAH3x7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2TiS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+JobuwAAAAA09t+/AAAAAAuy4L0AAAAANP7bPwAAAAAbOGq9AAAAAAdk5T8AAAAATrBmvQAAAABb5d2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtB6uzQeFOMAWyUTegDjAF0lEdApxaK7PIGQnV9lChoBkdAoUFi72+PBGgHTegDaAhHQKcdjW5paid1fZQoaAZHQKByExGlQ/JoB03oA2gIR0CnHesmWt2cdX2UKGgGR0CheombkOqeaAdN6ANoCEdApx6MGgSOBHV9lChoBkdAoWCQSzw+dWgHTegDaAhHQKcig4J/oaF1fZQoaAZHQJ+yIfxMFlloB03oA2gIR0CnKXj7Q9iddX2UKGgGR0CewTUp/gBLaAdN6ANoCEdApynWNkvsaHV9lChoBkdAnkvm6TW5H2gHTegDaAhHQKcqbuVopQV1fZQoaAZHQJ+v1qDbrTpoB03oA2gIR0CnLlMA3kxRdX2UKGgGR0CgYNDesPrfaAdN6ANoCEdApzVHmknCwnV9lChoBkdAnngMuOCGvmgHTegDaAhHQKc1pDpC8e11fZQoaAZHQKEVdYpUgjhoB03oA2gIR0CnNkIvJzT4dX2UKGgGR0CbLe7iADq4aAdN6ANoCEdApzo+1jRUm3V9lChoBkdAnVKUIToMa2gHTegDaAhHQKdBOOMl1KZ1fZQoaAZHQKDReLLpzLhoB03oA2gIR0CnQZcRtgrpdX2UKGgGR0Cg13RIjGDMaAdN6ANoCEdAp0IxkRSP2nV9lChoBkdAoEk4eaKDTWgHTegDaAhHQKdGGfHxSYR1fZQoaAZHQKFrrSRbKRxoB03oA2gIR0CnTRhU70WedX2UKGgGR0CgxRoS13MZaAdN6ANoCEdAp01xOvdM03V9lChoBkdAoF4utGNJe2gHTegDaAhHQKdOEkIHC411fZQoaAZHQKDIYlBQemxoB03oA2gIR0CnUgGPYFq0dX2UKGgGR0ChStq+JxecaAdN6ANoCEdAp1kp84Pwu3V9lChoBkdAoVBRxLkCFWgHTegDaAhHQKdZhOHnEEV1fZQoaAZHQKGOF4vexfRoB03oA2gIR0CnWiWRaHKwdX2UKGgGR0CgiNfSH/LlaAdN6ANoCEdAp14XjsD4g3V9lChoBkdAmc7KiwjdHmgHTegDaAhHQKdlIYgJTl11fZQoaAZHQKCB0OOsDGNoB03oA2gIR0CnZYGapgkUdX2UKGgGR0Cg2BYNy5qeaAdN6ANoCEdAp2YyYqoZRHV9lChoBkdAoY5pYcNpd2gHTegDaAhHQKdqGiKziS91fZQoaAZHQKBNU+xGDthoB03oA2gIR0CncSMWoFV1dX2UKGgGR0CgTZFruYx+aAdN6ANoCEdAp3GAWnCO3nV9lChoBkdAoQvx48lolGgHTegDaAhHQKdyHXIU8FJ1fZQoaAZHQKBwMQZGax5oB03oA2gIR0Cndg86/7BPdX2UKGgGR0CfVO2n889waAdN6ANoCEdAp30WtOmBOHV9lChoBkdAoJUWqebut2gHTegDaAhHQKd9dGtITXd1fZQoaAZHQKB2wHv+fiBoB03oA2gIR0CnfhJiRW92dX2UKGgGR0CE/Kg2606YaAdN6ANoCEdAp4IRRyfcvnV9lChoBkdAnLNbK3d9D2gHTegDaAhHQKeJJKyv9tN1fZQoaAZHQJ5Ln974SHxoB03oA2gIR0CniYF6Rhc8dX2UKGgGR0Cd4rmRvFWGaAdN6ANoCEdAp4opMWXTmXV9lChoBkdAn/Rf24/eL2gHTegDaAhHQKeOIj3225R1fZQoaAZHQKDFy4sEq2BoB03oA2gIR0CnlTc/MW43dX2UKGgGR0CekLKTjebeaAdN6ANoCEdAp5WXoTwlSnV9lChoBkdAoOLc+PikwmgHTegDaAhHQKeWMacZtN11fZQoaAZHQKDJLb5/LDBoB03oA2gIR0CnmiW7OE/TdX2UKGgGR0CgFzNtIkJKaAdN6ANoCEdAp6EssOG0u3V9lChoBkdAoA8Q8EFGG2gHTegDaAhHQKehiBo24ut1fZQoaAZHQKDghTXrdFhoB03oA2gIR0CnoiR8D0UXdX2UKGgGR0Cgc/qLbYbsaAdN6ANoCEdAp6Ys+otL+XV9lChoBkdAoZgwlByCF2gHTegDaAhHQKetKoWpIc11fZQoaAZHQKF4OUwBYFJoB03oA2gIR0CnrYsspXp4dX2UKGgGR0ChtA562OQyaAdN6ANoCEdAp64u2CuloHV9lChoBkdAoDdDdvbXYmgHTegDaAhHQKeyICL/CIl1fZQoaAZHQKBqfxn3+MtoB03oA2gIR0CnuROdwvQGdX2UKGgGR0CbImD2JzkqaAdN6ANoCEdAp7ltyxRl6XV9lChoBkdAntvPZ/Tb4GgHTegDaAhHQKe6DNTtLL91fZQoaAZHQKETUNDMNc5oB03oA2gIR0CnvfAZCOWCdX2UKGgGR0CgvLATRIBjaAdN6ANoCEdAp8ToMBp5/3V9lChoBkdAoKb2LpA2RGgHTegDaAhHQKfFQiiZfD11fZQoaAZHQKFPcpuuRtBoB03oA2gIR0CnxeUcwQDndX2UKGgGR0ChijJZ4fOlaAdN6ANoCEdAp8nc/6frbHV9lChoBkdAoGV2J79hqmgHTegDaAhHQKfQ9Aqur6t1fZQoaAZHQKCX25NGmUJoB03oA2gIR0Cn0VJd0JWvdX2UKGgGR0Cgr1KRU3n7aAdN6ANoCEdAp9HrfgrH2nV9lChoBkdAoBaCAavRq2gHTegDaAhHQKfV2u8scyZ1fZQoaAZHQJtg0UEgW8BoB03oA2gIR0Cn3NA0TDfndX2UKGgGR0CbV40+C9RKaAdN6ANoCEdAp90rEtNBW3V9lChoBkdAnTGL6+FlCmgHTegDaAhHQKfdwZ+hGpd1fZQoaAZHQJvuSv6j325oB03oA2gIR0Cn4dYnfEXMdX2UKGgGR0CevfC7btZ3aAdN6ANoCEdAp+jING3F1nV9lChoBkdAoMm8Es8PnWgHTegDaAhHQKfpJuVHFxZ1fZQoaAZHQKD3DtTDO1RoB03oA2gIR0Cn6cRWDHwPdX2UKGgGR0CbTuVsk6cRaAdN6ANoCEdAp+2z212JSHV9lChoBkdAoCTCYRdyDWgHTegDaAhHQKf0sAQxveh1fZQoaAZHQKFd9OGj9GZoB03oA2gIR0Cn9Q5MDfWMdX2UKGgGR0Cgg2LRrrPdaAdN6ANoCEdAp/WnIsAeaXV9lChoBkdAoF6cCT2WZGgHTegDaAhHQKf5mrRSgoR1fZQoaAZHQJplNemelKtoB03oA2gIR0CoAKhd2PkrdX2UKGgGR0Cc9dpda+vhaAdN6ANoCEdAqAEOiFj/dnV9lChoBkdAlwg29xp+MWgHTegDaAhHQKgBqearmyR1fZQoaAZHQJ5nlxzaK1poB03oA2gIR0CoBZ5ElVtGdX2UKGgGR0CcYfx7AtWdaAdN6ANoCEdAqAycE5hjOXV9lChoBkdAmE57AHmig2gHTegDaAhHQKgM+Sh8IAx1fZQoaAZHQJ80KdJ8OTdoB03oA2gIR0CoDZVndweedX2UKGgGR0Cfim87IT4+aAdN6ANoCEdAqBGRBTn7pHV9lChoBkdAnCh2JaaCtmgHTegDaAhHQKgYbPuXu3N1fZQoaAZHQJ6iPwRXfZVoB03oA2gIR0CoGNT/6wdKdX2UKGgGR0CTJTCbc45taAdN6ANoCEdAqBl2nAIppnV9lChoBkdAmHfgyhzvJGgHTegDaAhHQKgdiCbtqpN1fZQoaAZHQIcqnj2i+L5oB03BAWgIR0CoHwqaoddWdX2UKGgGR0CTiqJq7AclaAdN6ANoCEdAqCSZB1LamHV9lChoBkdAlkT8tTUAk2gHTegDaAhHQKgk+BtDUmV1fZQoaAZHQJ7jlB9kSVZoB03oA2gIR0CoKYChvitJdX2UKGgGR0Cc8aXj2i+MaAdN6ANoCEdAqCruRs/IKnV9lChoBkdAn4fQn2Iwd2gHTegDaAhHQKgwn91EE1V1fZQoaAZHQJ6KtIBikO9oB03oA2gIR0CoMPvpyIYWdX2UKGgGR0CgVdnuRcNZaAdN6ANoCEdAqDV2pAD7qXV9lChoBkdAoHYZAQg9vGgHTegDaAhHQKg230163RZ1fZQoaAZHQKBRkqo60Y1oB03oA2gIR0CoPGfWlMyrdX2UKGgGR0CgYb/JvHcUaAdN6ANoCEdAqDzG5lOGkHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bde513551712a65e473ab1051b01b088ec41674c8e59edb91a2a92e9080b8de6
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:367c25972d311732d5a551ac78e5ad528f4484f866cb6b2193594fb77c0ebcb9
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdfc616dee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdfc616df70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdfc6171040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdfc61710d0>", "_build": "<function ActorCriticPolicy._build at 0x7fdfc6171160>", "forward": "<function ActorCriticPolicy.forward at 0x7fdfc61711f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdfc6171280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdfc6171310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdfc61713a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdfc6171430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdfc61714c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdfc6171550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdfc616c450>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673970799973206067, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIy0Pz639q2+4/fCPs98lz+/p42+ckamPn4GaD9hheU8A8MgPwSAMz6QdkY/9S6Mv1nIZr8giJc/XICLv/N8Cz+alF6+LrQmPwd/Ez+2NxC/mbMEvrqJw75fSeO9v7QUPwhydT+buuE+OsYRPxnBhb+99Ms+2eiTP8za7Lp1tJo/RCTUP4a65L2+KgU+pr9EvyNOOj/fL5m8I6Q6PhMwbb6pdJQ/RxnBP2g8HD/AX/I/T7+rPy+HCEAuqSY/IvZRPx1PML9TWz++Go8/P4ENdD4UgYW/m7rhPirJ4L+N/HQ/45c8vwl7kT5oU8g+lqFMP6BBXz8RohM/s5SvvjZWsb67GPW+xFnEvrR4IL8fYXE/LEU+P5JUDj5K24c/Rn4vvyZAXT9bYSe/5ux/Po3qaD1wSTy/zlu4PjYyNz5SV/u9FIGFv5u64T46xhE/jfx0PwyKuz257Am/V9GnPg0dbT85EEu/hsOfP75IBD/EwM++xd6YvmshPz8ZwHU/W6ZqPqVEjr87eSPAR0KpvspEur9z0Fy/5RJUv9PkOj8wD42+8tolvx/fdz5WL0a/CrLuOwhydT9OKhHAOsYRPxnBhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADQM+u0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATg6ivQAAAACO6v6/AAAAAADQtb0AAAAAtPnjPwAAAADKK3S9AAAAAGvz7j8AAAAASgE8vQAAAADnYvS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcwLlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHFps70AAAAAmvTdvwAAAADJ8NY9AAAAAD6Q7T8AAAAAfmSYPQAAAAClPO8/AAAAABjyuLwAAAAAtt7/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMswhrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAx7yQ9AAAAAG2n3L8AAAAAZS6jPQAAAABux9s/AAAAADf7Oz0AAAAAdmHvPwAAAAC528c9AAAAAH3x7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2TiS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+JobuwAAAAA09t+/AAAAAAuy4L0AAAAANP7bPwAAAAAbOGq9AAAAAAdk5T8AAAAATrBmvQAAAABb5d2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtB6uzQeFOMAWyUTegDjAF0lEdApxaK7PIGQnV9lChoBkdAoUFi72+PBGgHTegDaAhHQKcdjW5paid1fZQoaAZHQKByExGlQ/JoB03oA2gIR0CnHesmWt2cdX2UKGgGR0CheombkOqeaAdN6ANoCEdApx6MGgSOBHV9lChoBkdAoWCQSzw+dWgHTegDaAhHQKcig4J/oaF1fZQoaAZHQJ+yIfxMFlloB03oA2gIR0CnKXj7Q9iddX2UKGgGR0CewTUp/gBLaAdN6ANoCEdApynWNkvsaHV9lChoBkdAnkvm6TW5H2gHTegDaAhHQKcqbuVopQV1fZQoaAZHQJ+v1qDbrTpoB03oA2gIR0CnLlMA3kxRdX2UKGgGR0CgYNDesPrfaAdN6ANoCEdApzVHmknCwnV9lChoBkdAnngMuOCGvmgHTegDaAhHQKc1pDpC8e11fZQoaAZHQKEVdYpUgjhoB03oA2gIR0CnNkIvJzT4dX2UKGgGR0CbLe7iADq4aAdN6ANoCEdApzo+1jRUm3V9lChoBkdAnVKUIToMa2gHTegDaAhHQKdBOOMl1KZ1fZQoaAZHQKDReLLpzLhoB03oA2gIR0CnQZcRtgrpdX2UKGgGR0Cg13RIjGDMaAdN6ANoCEdAp0IxkRSP2nV9lChoBkdAoEk4eaKDTWgHTegDaAhHQKdGGfHxSYR1fZQoaAZHQKFrrSRbKRxoB03oA2gIR0CnTRhU70WedX2UKGgGR0CgxRoS13MZaAdN6ANoCEdAp01xOvdM03V9lChoBkdAoF4utGNJe2gHTegDaAhHQKdOEkIHC411fZQoaAZHQKDIYlBQemxoB03oA2gIR0CnUgGPYFq0dX2UKGgGR0ChStq+JxecaAdN6ANoCEdAp1kp84Pwu3V9lChoBkdAoVBRxLkCFWgHTegDaAhHQKdZhOHnEEV1fZQoaAZHQKGOF4vexfRoB03oA2gIR0CnWiWRaHKwdX2UKGgGR0CgiNfSH/LlaAdN6ANoCEdAp14XjsD4g3V9lChoBkdAmc7KiwjdHmgHTegDaAhHQKdlIYgJTl11fZQoaAZHQKCB0OOsDGNoB03oA2gIR0CnZYGapgkUdX2UKGgGR0Cg2BYNy5qeaAdN6ANoCEdAp2YyYqoZRHV9lChoBkdAoY5pYcNpd2gHTegDaAhHQKdqGiKziS91fZQoaAZHQKBNU+xGDthoB03oA2gIR0CncSMWoFV1dX2UKGgGR0CgTZFruYx+aAdN6ANoCEdAp3GAWnCO3nV9lChoBkdAoQvx48lolGgHTegDaAhHQKdyHXIU8FJ1fZQoaAZHQKBwMQZGax5oB03oA2gIR0Cndg86/7BPdX2UKGgGR0CfVO2n889waAdN6ANoCEdAp30WtOmBOHV9lChoBkdAoJUWqebut2gHTegDaAhHQKd9dGtITXd1fZQoaAZHQKB2wHv+fiBoB03oA2gIR0CnfhJiRW92dX2UKGgGR0CE/Kg2606YaAdN6ANoCEdAp4IRRyfcvnV9lChoBkdAnLNbK3d9D2gHTegDaAhHQKeJJKyv9tN1fZQoaAZHQJ5Ln974SHxoB03oA2gIR0CniYF6Rhc8dX2UKGgGR0Cd4rmRvFWGaAdN6ANoCEdAp4opMWXTmXV9lChoBkdAn/Rf24/eL2gHTegDaAhHQKeOIj3225R1fZQoaAZHQKDFy4sEq2BoB03oA2gIR0CnlTc/MW43dX2UKGgGR0CekLKTjebeaAdN6ANoCEdAp5WXoTwlSnV9lChoBkdAoOLc+PikwmgHTegDaAhHQKeWMacZtN11fZQoaAZHQKDJLb5/LDBoB03oA2gIR0CnmiW7OE/TdX2UKGgGR0CgFzNtIkJKaAdN6ANoCEdAp6EssOG0u3V9lChoBkdAoA8Q8EFGG2gHTegDaAhHQKehiBo24ut1fZQoaAZHQKDghTXrdFhoB03oA2gIR0CnoiR8D0UXdX2UKGgGR0Cgc/qLbYbsaAdN6ANoCEdAp6Ys+otL+XV9lChoBkdAoZgwlByCF2gHTegDaAhHQKetKoWpIc11fZQoaAZHQKF4OUwBYFJoB03oA2gIR0CnrYsspXp4dX2UKGgGR0ChtA562OQyaAdN6ANoCEdAp64u2CuloHV9lChoBkdAoDdDdvbXYmgHTegDaAhHQKeyICL/CIl1fZQoaAZHQKBqfxn3+MtoB03oA2gIR0CnuROdwvQGdX2UKGgGR0CbImD2JzkqaAdN6ANoCEdAp7ltyxRl6XV9lChoBkdAntvPZ/Tb4GgHTegDaAhHQKe6DNTtLL91fZQoaAZHQKETUNDMNc5oB03oA2gIR0CnvfAZCOWCdX2UKGgGR0CgvLATRIBjaAdN6ANoCEdAp8ToMBp5/3V9lChoBkdAoKb2LpA2RGgHTegDaAhHQKfFQiiZfD11fZQoaAZHQKFPcpuuRtBoB03oA2gIR0CnxeUcwQDndX2UKGgGR0ChijJZ4fOlaAdN6ANoCEdAp8nc/6frbHV9lChoBkdAoGV2J79hqmgHTegDaAhHQKfQ9Aqur6t1fZQoaAZHQKCX25NGmUJoB03oA2gIR0Cn0VJd0JWvdX2UKGgGR0Cgr1KRU3n7aAdN6ANoCEdAp9HrfgrH2nV9lChoBkdAoBaCAavRq2gHTegDaAhHQKfV2u8scyZ1fZQoaAZHQJtg0UEgW8BoB03oA2gIR0Cn3NA0TDfndX2UKGgGR0CbV40+C9RKaAdN6ANoCEdAp90rEtNBW3V9lChoBkdAnTGL6+FlCmgHTegDaAhHQKfdwZ+hGpd1fZQoaAZHQJvuSv6j325oB03oA2gIR0Cn4dYnfEXMdX2UKGgGR0CevfC7btZ3aAdN6ANoCEdAp+jING3F1nV9lChoBkdAoMm8Es8PnWgHTegDaAhHQKfpJuVHFxZ1fZQoaAZHQKD3DtTDO1RoB03oA2gIR0Cn6cRWDHwPdX2UKGgGR0CbTuVsk6cRaAdN6ANoCEdAp+2z212JSHV9lChoBkdAoCTCYRdyDWgHTegDaAhHQKf0sAQxveh1fZQoaAZHQKFd9OGj9GZoB03oA2gIR0Cn9Q5MDfWMdX2UKGgGR0Cgg2LRrrPdaAdN6ANoCEdAp/WnIsAeaXV9lChoBkdAoF6cCT2WZGgHTegDaAhHQKf5mrRSgoR1fZQoaAZHQJplNemelKtoB03oA2gIR0CoAKhd2PkrdX2UKGgGR0Cc9dpda+vhaAdN6ANoCEdAqAEOiFj/dnV9lChoBkdAlwg29xp+MWgHTegDaAhHQKgBqearmyR1fZQoaAZHQJ5nlxzaK1poB03oA2gIR0CoBZ5ElVtGdX2UKGgGR0CcYfx7AtWdaAdN6ANoCEdAqAycE5hjOXV9lChoBkdAmE57AHmig2gHTegDaAhHQKgM+Sh8IAx1fZQoaAZHQJ80KdJ8OTdoB03oA2gIR0CoDZVndweedX2UKGgGR0Cfim87IT4+aAdN6ANoCEdAqBGRBTn7pHV9lChoBkdAnCh2JaaCtmgHTegDaAhHQKgYbPuXu3N1fZQoaAZHQJ6iPwRXfZVoB03oA2gIR0CoGNT/6wdKdX2UKGgGR0CTJTCbc45taAdN6ANoCEdAqBl2nAIppnV9lChoBkdAmHfgyhzvJGgHTegDaAhHQKgdiCbtqpN1fZQoaAZHQIcqnj2i+L5oB03BAWgIR0CoHwqaoddWdX2UKGgGR0CTiqJq7AclaAdN6ANoCEdAqCSZB1LamHV9lChoBkdAlkT8tTUAk2gHTegDaAhHQKgk+BtDUmV1fZQoaAZHQJ7jlB9kSVZoB03oA2gIR0CoKYChvitJdX2UKGgGR0Cc8aXj2i+MaAdN6ANoCEdAqCruRs/IKnV9lChoBkdAn4fQn2Iwd2gHTegDaAhHQKgwn91EE1V1fZQoaAZHQJ6KtIBikO9oB03oA2gIR0CoMPvpyIYWdX2UKGgGR0CgVdnuRcNZaAdN6ANoCEdAqDV2pAD7qXV9lChoBkdAoHYZAQg9vGgHTegDaAhHQKg230163RZ1fZQoaAZHQKBRkqo60Y1oB03oA2gIR0CoPGfWlMyrdX2UKGgGR0CgYb/JvHcUaAdN6ANoCEdAqDzG5lOGkHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f10c24bdc01c1ded0ab69186cfe5317c93e7e6fdc620c63b184b56fdd8e81396
|
3 |
+
size 1012910
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1919.281204843866, "std_reward": 410.68287350384645, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T16:47:16.057635"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae14030f10694613b98181612ce40b858afb203f5e2834a67897c0ff55b4599f
|
3 |
+
size 2521
|