a2c-PandaReachDense-v2 / config.json
andrea-silvi's picture
Initial commit
b9a735a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8964e8adc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8964e86b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679855423966450345, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAC5ONPmAjS7zDdBI/C5ONPmAjS7zDdBI/C5ONPmAjS7zDdBI/C5ONPmAjS7zDdBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf8o0PwNtgL/gc2q+gqhiPwkPRD/asYy/2a6EP8HPrr+lBhW/zpgtvyPg2j9H+bG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAALk40+YCNLvMN0Ej/hwyw9i/xzuzSCXz0Lk40+YCNLvMN0Ej/hwyw9i/xzuzSCXz0Lk40+YCNLvMN0Ej/hwyw9i/xzuzSCXz0Lk40+YCNLvMN0Ej/hwyw9i/xzuzSCXz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27651247 -0.01239857 0.57209414]\n [ 0.27651247 -0.01239857 0.57209414]\n [ 0.27651247 -0.01239857 0.57209414]\n [ 0.27651247 -0.01239857 0.57209414]]", "desired_goal": "[[ 0.70621485 -1.0033268 -0.22895765]\n [ 0.8853837 0.7658544 -1.0991776 ]\n [ 1.0365859 -1.3657151 -0.58213264]\n [-0.67811286 1.7099651 -1.3904198 ]]", "observation": "[[ 0.27651247 -0.01239857 0.57209414 0.04217899 -0.00372294 0.05456753]\n [ 0.27651247 -0.01239857 0.57209414 0.04217899 -0.00372294 0.05456753]\n [ 0.27651247 -0.01239857 0.57209414 0.04217899 -0.00372294 0.05456753]\n [ 0.27651247 -0.01239857 0.57209414 0.04217899 -0.00372294 0.05456753]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7AA/PORN7j3KeHY+S2hDPRgQpr1+T/89mXizPTlEBz5tU3Q+qQW4vYav5Lz6+1A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01165793 0.1163595 0.24069515]\n [ 0.04770688 -0.08108538 0.12466334]\n [ 0.08763237 0.13209619 0.2385995 ]\n [-0.08985455 -0.02791573 0.20408621]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8N+8OPFV8r+UhpRSlIwBbJRLMowBdJRHQKnRLyyUs4F1fZQoaAZoCWgPQwhslstG5/zhv5SGlFKUaBVLMmgWR0Cp0O/ACW/rdX2UKGgGaAloD0MIYkhOJm4V9b+UhpRSlGgVSzJoFkdAqdCuCyyD7XV9lChoBmgJaA9DCIZa07zjFO6/lIaUUpRoFUsyaBZHQKnQbEJjUd91fZQoaAZoCWgPQwimnC/2Xnzdv5SGlFKUaBVLMmgWR0Cp0mIQFs55dX2UKGgGaAloD0MIF7fRAN6C7b+UhpRSlGgVSzJoFkdAqdIjGxUvPHV9lChoBmgJaA9DCCgQdopVA+u/lIaUUpRoFUsyaBZHQKnR4ZgogFJ1fZQoaAZoCWgPQwjC9/4G7dXav5SGlFKUaBVLMmgWR0Cp0Z+9Jz1cdX2UKGgGaAloD0MI0o+GU+bm6r+UhpRSlGgVSzJoFkdAqdOH1zySWHV9lChoBmgJaA9DCLb4FADjGd+/lIaUUpRoFUsyaBZHQKnTSHhS9/V1fZQoaAZoCWgPQwgE54wo7Y3nv5SGlFKUaBVLMmgWR0Cp0wb7CSA6dX2UKGgGaAloD0MItAOuK2aE4L+UhpRSlGgVSzJoFkdAqdLFHz6JqXV9lChoBmgJaA9DCNTzbiwojOy/lIaUUpRoFUsyaBZHQKnUnVQQ+U11fZQoaAZoCWgPQwjKcDyfAfXkv5SGlFKUaBVLMmgWR0Cp1F2jGkvcdX2UKGgGaAloD0MIrvGZ7J8n7L+UhpRSlGgVSzJoFkdAqdQcBltj1HV9lChoBmgJaA9DCNcwQ+OJoOa/lIaUUpRoFUsyaBZHQKnT2rjHXEt1fZQoaAZoCWgPQwhoCMcse5Liv5SGlFKUaBVLMmgWR0Cp1b021lXjdX2UKGgGaAloD0MI4uZUMgBU4L+UhpRSlGgVSzJoFkdAqdV9v0h/zHV9lChoBmgJaA9DCJT5R9+k6e+/lIaUUpRoFUsyaBZHQKnVPDa4+bF1fZQoaAZoCWgPQwjG+ZtQiIDcv5SGlFKUaBVLMmgWR0Cp1PocinpCdX2UKGgGaAloD0MIPZrqyfyj4L+UhpRSlGgVSzJoFkdAqdbe/ag263V9lChoBmgJaA9DCI6xE16C0+q/lIaUUpRoFUsyaBZHQKnWn0nw5Np1fZQoaAZoCWgPQwjqeTcWFIbtv5SGlFKUaBVLMmgWR0Cp1l3CCSRsdX2UKGgGaAloD0MIjUP9LmwN+L+UhpRSlGgVSzJoFkdAqdYb3Cbc5HV9lChoBmgJaA9DCD51rFJ6puq/lIaUUpRoFUsyaBZHQKnX+bedkJ91fZQoaAZoCWgPQwidZoF2hxTlv5SGlFKUaBVLMmgWR0Cp17ojOcDsdX2UKGgGaAloD0MIH9sy4Cyl8b+UhpRSlGgVSzJoFkdAqdd4b0e2eHV9lChoBmgJaA9DCBLBOLh0zPG/lIaUUpRoFUsyaBZHQKnXNnOB19x1fZQoaAZoCWgPQwjRBIpYxLDtv5SGlFKUaBVLMmgWR0Cp2TDRUm2LdX2UKGgGaAloD0MINGjon+Bi6b+UhpRSlGgVSzJoFkdAqdjxP0qYq3V9lChoBmgJaA9DCEs9C0J5n+2/lIaUUpRoFUsyaBZHQKnYr/HYHxB1fZQoaAZoCWgPQwgc7bjhd9Pzv5SGlFKUaBVLMmgWR0Cp2G6Oo5xSdX2UKGgGaAloD0MI+WpHcY66/r+UhpRSlGgVSzJoFkdAqdo9II4VAXV9lChoBmgJaA9DCBfxnZj1ovS/lIaUUpRoFUsyaBZHQKnZ/ZuAI6d1fZQoaAZoCWgPQwj75ZMVw9X3v5SGlFKUaBVLMmgWR0Cp2buzyBkJdX2UKGgGaAloD0MIQnbexmZH2L+UhpRSlGgVSzJoFkdAqdl5u/Dcd3V9lChoBmgJaA9DCBAf2PFfINy/lIaUUpRoFUsyaBZHQKnbb9jwx351fZQoaAZoCWgPQwimgR/VsN/av5SGlFKUaBVLMmgWR0Cp2zBuwX67dX2UKGgGaAloD0MIqRPQRNjw17+UhpRSlGgVSzJoFkdAqdruyon8bnV9lChoBmgJaA9DCOp1i8BYH/C/lIaUUpRoFUsyaBZHQKnarOymhuh1fZQoaAZoCWgPQwi3tvC8VOznv5SGlFKUaBVLMmgWR0Cp3I0Uwi7kdX2UKGgGaAloD0MIlWWIY13c4b+UhpRSlGgVSzJoFkdAqdxNm4Ajp3V9lChoBmgJaA9DCJimCHB6F9W/lIaUUpRoFUsyaBZHQKncC+8oQWh1fZQoaAZoCWgPQwjikuNO6WDev5SGlFKUaBVLMmgWR0Cp28oRAbADdX2UKGgGaAloD0MI6UXtfhVg4b+UhpRSlGgVSzJoFkdAqd4ySowVTXV9lChoBmgJaA9DCHukwW1t4da/lIaUUpRoFUsyaBZHQKnd89RJmNB1fZQoaAZoCWgPQwjG+gYmNwrlv5SGlFKUaBVLMmgWR0Cp3bKNyYG/dX2UKGgGaAloD0MIYFYo0v2c5r+UhpRSlGgVSzJoFkdAqd1xlQMx5HV9lChoBmgJaA9DCDs6rkZ2Jee/lIaUUpRoFUsyaBZHQKngFT6SDAd1fZQoaAZoCWgPQwiy9QzhmOXxv5SGlFKUaBVLMmgWR0Cp39YRVZLadX2UKGgGaAloD0MILa9cb5up5L+UhpRSlGgVSzJoFkdAqd+VL39JjHV9lChoBmgJaA9DCJvlstE5P96/lIaUUpRoFUsyaBZHQKnfVDGcWj51fZQoaAZoCWgPQwiEnWLVIMzzv5SGlFKUaBVLMmgWR0Cp4efqX4TLdX2UKGgGaAloD0MIRkJbzqX49L+UhpRSlGgVSzJoFkdAqeGpgAp8W3V9lChoBmgJaA9DCNp1b0Viwva/lIaUUpRoFUsyaBZHQKnhaRQrMC91fZQoaAZoCWgPQwi4j9yadNvkv5SGlFKUaBVLMmgWR0Cp4SiFK02MdX2UKGgGaAloD0MIPDJWm/9X37+UhpRSlGgVSzJoFkdAqePV+Vkc0nV9lChoBmgJaA9DCJKRs7CnHe+/lIaUUpRoFUsyaBZHQKnjlz+WGAV1fZQoaAZoCWgPQwi858ByhEz0v5SGlFKUaBVLMmgWR0Cp41ZSWJJodX2UKGgGaAloD0MIPIcyVMVU6b+UhpRSlGgVSzJoFkdAqeMVk6Lfk3V9lChoBmgJaA9DCDQRNjy9Uuq/lIaUUpRoFUsyaBZHQKnlvywwCbN1fZQoaAZoCWgPQwiP39v0Zz/ev5SGlFKUaBVLMmgWR0Cp5YD8tPHldX2UKGgGaAloD0MIgJ4GDJK+6r+UhpRSlGgVSzJoFkdAqeVAOhCdBnV9lChoBmgJaA9DCEzBGmfTkeq/lIaUUpRoFUsyaBZHQKnk/w7T2Fp1fZQoaAZoCWgPQwibqRCPxMu/v5SGlFKUaBVLMmgWR0Cp56oVuaWpdX2UKGgGaAloD0MI8wNXeQLh67+UhpRSlGgVSzJoFkdAqedrqfOD8XV9lChoBmgJaA9DCMEaZ9MRwOq/lIaUUpRoFUsyaBZHQKnnKrmyPdV1fZQoaAZoCWgPQwjGUiRfCaTfv5SGlFKUaBVLMmgWR0Cp5umYSg5BdX2UKGgGaAloD0MIk8X9R6ZD6L+UhpRSlGgVSzJoFkdAqejxvrGBF3V9lChoBmgJaA9DCPPlBdhHp9y/lIaUUpRoFUsyaBZHQKnosjopx3p1fZQoaAZoCWgPQwi/CvDd5o3Rv5SGlFKUaBVLMmgWR0Cp6HCDujREdX2UKGgGaAloD0MIRkPGo1RC47+UhpRSlGgVSzJoFkdAqeguZkTYd3V9lChoBmgJaA9DCFIpdjQO9di/lIaUUpRoFUsyaBZHQKnqC/lhgE51fZQoaAZoCWgPQwivWpnwS/3dv5SGlFKUaBVLMmgWR0Cp6cyOBDohdX2UKGgGaAloD0MImgtcHmtG5L+UhpRSlGgVSzJoFkdAqemKwUxmCnV9lChoBmgJaA9DCIAPXru0Ifm/lIaUUpRoFUsyaBZHQKnpSLlV94N1fZQoaAZoCWgPQwjCNAwfEdPlv5SGlFKUaBVLMmgWR0Cp6xn7HhjwdX2UKGgGaAloD0MIFhObj2sD8b+UhpRSlGgVSzJoFkdAqerac/dIoXV9lChoBmgJaA9DCELO+/84Yd6/lIaUUpRoFUsyaBZHQKnqmNBnjAB1fZQoaAZoCWgPQwinsijsomjkv5SGlFKUaBVLMmgWR0Cp6lbQTmGNdX2UKGgGaAloD0MIJh5QNuUK0L+UhpRSlGgVSzJoFkdAqew3c8DB/XV9lChoBmgJaA9DCIhmnlxTIOa/lIaUUpRoFUsyaBZHQKnr9/echDB1fZQoaAZoCWgPQwgaprbUQd7kv5SGlFKUaBVLMmgWR0Cp67ZM10kodX2UKGgGaAloD0MI+62dKAkJ77+UhpRSlGgVSzJoFkdAqet0LSeAeHV9lChoBmgJaA9DCIcUAySaQOW/lIaUUpRoFUsyaBZHQKntTmW+oLp1fZQoaAZoCWgPQwgNp8zNN6Luv5SGlFKUaBVLMmgWR0Cp7Q7u+h4/dX2UKGgGaAloD0MIXKs97IWC4L+UhpRSlGgVSzJoFkdAqezNQEZBLXV9lChoBmgJaA9DCEYKZeHra/K/lIaUUpRoFUsyaBZHQKnsi0Q9RrJ1fZQoaAZoCWgPQwjb4ET0a6v2v5SGlFKUaBVLMmgWR0Cp7mYf4h2XdX2UKGgGaAloD0MIUwWjkjqB4r+UhpRSlGgVSzJoFkdAqe4myJKraXV9lChoBmgJaA9DCL1vfO2ZpfW/lIaUUpRoFUsyaBZHQKnt5NSqEOB1fZQoaAZoCWgPQwhYcD/ggQHfv5SGlFKUaBVLMmgWR0Cp7aLW7OE/dX2UKGgGaAloD0MIDi+ISE276b+UhpRSlGgVSzJoFkdAqe+QJgLJCHV9lChoBmgJaA9DCFsnLscrkOy/lIaUUpRoFUsyaBZHQKnvUKyfL9x1fZQoaAZoCWgPQwi4Pqw3aoXWv5SGlFKUaBVLMmgWR0Cp7w8Bltj1dX2UKGgGaAloD0MIx9eeWRLg+b+UhpRSlGgVSzJoFkdAqe7NGd7OV3V9lChoBmgJaA9DCJuPa0PFOOy/lIaUUpRoFUsyaBZHQKnwt+4LCvZ1fZQoaAZoCWgPQwigcHZrmYzuv5SGlFKUaBVLMmgWR0Cp8HiEQGwBdX2UKGgGaAloD0MIxXHg1XKn8L+UhpRSlGgVSzJoFkdAqfA2tCAtnXV9lChoBmgJaA9DCIz4Tsx6sea/lIaUUpRoFUsyaBZHQKnv9LteD4B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}