anders0204
commited on
Commit
•
73a2b6d
1
Parent(s):
af12c0f
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dea48049ad35c25781ff38152e8a80936b98039de0dae5274a3e22ced1378047
|
3 |
+
size 106916
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f28e067ecb0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f294201b140>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1696927144574073437,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAj7LBPcaV1L6XgRc/9lR/PxuM2T7iEms+96U8P8lNmj83GkC+D46EPrA9AruCTcw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6BO+Psc0cr/yLDY/rtDPP311KT+dX46/2Zz9PjSpyD+o/YQ+yfodPw8trz/gdL4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPssE9xpXUvpeBFz812dQ+l1rWv02elj/2VH8/G4zZPuISaz68pcU/l6nUPz/Ykr/3pTw/yU2aPzcaQL7rIa0/+S5eP2uLfD4PjoQ+sD0Cu4JNzD4Ujuk+gY31ubduvz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.09457885 -0.41520518 0.59182113]\n [ 0.99739015 0.42489704 0.22956422]\n [ 0.7369074 1.2054988 -0.1876 ]\n [ 0.25889632 -0.00198732 0.39902884]]",
|
34 |
+
"desired_goal": "[[ 0.37124562 -0.9461178 0.7116233 ]\n [ 1.6235559 0.661949 -1.1122929 ]\n [ 0.49533728 1.5676637 0.25974774]\n [ 0.6171079 1.3685626 0.37198544]]",
|
35 |
+
"observation": "[[ 9.4578855e-02 -4.1520518e-01 5.9182113e-01 4.1571966e-01\n -1.6746396e+00 1.1767060e+00]\n [ 9.9739015e-01 4.2489704e-01 2.2956422e-01 1.5441203e+00\n 1.6614255e+00 -1.1472243e+00]\n [ 7.3690742e-01 1.2054988e+00 -1.8760000e-01 1.3525976e+00\n 8.6790425e-01 2.4662559e-01]\n [ 2.5889632e-01 -1.9873194e-03 3.9902884e-01 4.5616210e-01\n -4.6835470e-04 3.7389156e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2e3yvT2xor1+1yM+pkOMPR+St7yoDQk9fsWJvbHIKz1K0xw98NhvvVRwC763gP09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.11861772 -0.07943962 0.16000172]\n [ 0.0684884 -0.02240854 0.03346029]\n [-0.06727122 0.04193944 0.03828744]\n [-0.0585565 -0.13617069 0.12378066]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7Nzjm0VrRCMAWyUSwKMAXSUR0ClLLEW69TQdX2UKGgGR7/f7wazeGfxaAdLCGgIR0ClLQxBu4wzdX2UKGgGR7/F3AVO9FnaaAdLA2gIR0ClLaAeJYT1dX2UKGgGR7+yi7CiyprDaAdLAmgIR0ClLVudoWYXdX2UKGgGR7+lxsEaESM+aAdLAWgIR0ClLadc0LtvdX2UKGgGR7/LoB7u2JBPaAdLA2gIR0ClLSFkQPI5dX2UKGgGR7/D3B55Z8rqaAdLAmgIR0ClLbi6xxDLdX2UKGgGR7/GX8fms/6gaAdLA2gIR0ClLXTImw7ldX2UKGgGR7+9/+bVjI7vaAdLAmgIR0ClLcpkPMB7dX2UKGgGR7/KF/x2B8QaaAdLA2gIR0ClLT4Uvf0mdX2UKGgGR7/SSA6Mir1eaAdLA2gIR0ClLY40EX+EdX2UKGgGR7/TLqD9OymiaAdLA2gIR0ClLeSN4qwydX2UKGgGR7/JpWV/tpmFaAdLA2gIR0ClLVekxh2GdX2UKGgGR7/UXNC7btZ3aAdLA2gIR0ClLacEFGG3dX2UKGgGR7+7alDWsijdaAdLAmgIR0ClLWVIqbz9dX2UKGgGR7/O+NcW0qpcaAdLA2gIR0ClLfmjTKDDdX2UKGgGR7/IV9nbqQiiaAdLA2gIR0ClLbweNkvsdX2UKGgGR7+24MF2V3UyaAdLAmgIR0ClLXP+fh/BdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClLhGqgh8qdX2UKGgGR7+7CTEBKcuraAdLAmgIR0ClLYTr3TNMdX2UKGgGR7/HVNHpbD/EaAdLA2gIR0ClLdT/ZM+NdX2UKGgGR7/3VJpWV/tqaAdLEmgIR0ClLUD4xk/bdX2UKGgGR7/VShakhzNmaAdLA2gIR0ClLiloDgZTdX2UKGgGR7/KkAxSHdoGaAdLA2gIR0ClLZzcAR02dX2UKGgGR7/Nrt3OfNA1aAdLA2gIR0ClLfC9IwuedX2UKGgGR7+4lWwNb1RMaAdLAmgIR0ClLjzfzjFRdX2UKGgGR7/DBUJfICEIaAdLAmgIR0ClLbBCtzS1dX2UKGgGR7/S1MM7U5MlaAdLA2gIR0ClLVyPMjeLdX2UKGgGR7+kt03fhuO0aAdLAWgIR0ClLkT0xubadX2UKGgGR7+yhg3Lmp2maAdLAmgIR0ClLgCZ4Oc2dX2UKGgGR7+4s9SuQp4KaAdLAmgIR0ClLcCRnvlVdX2UKGgGR7/Qmv4dp7C0aAdLA2gIR0ClLXRu89OidX2UKGgGR7/NgNPP9kz5aAdLA2gIR0ClLl/JvHcUdX2UKGgGR7/RJhvze40/aAdLA2gIR0ClLhtvfj0ddX2UKGgGR7/SBZZB9kSVaAdLA2gIR0ClLdp+c6NmdX2UKGgGR7+1Y8uBczInaAdLAmgIR0ClLYarmyPddX2UKGgGR7/QyqdYnv2HaAdLA2gIR0ClLjEK/mDEdX2UKGgGR7/FzzVc2R7raAdLAmgIR0ClLejM/yG0dX2UKGgGR7/E2a2F36hyaAdLAmgIR0ClLZTufEn9dX2UKGgGR7/XC66J66ataAdLBGgIR0ClLn1yWAwxdX2UKGgGR7/VDIBBAv+PaAdLA2gIR0ClLkkGZ/kOdX2UKGgGR7/Nk+X7cfvGaAdLA2gIR0ClLgDG96C2dX2UKGgGR7/JxhlUZNwjaAdLA2gIR0ClLa0RFqi5dX2UKGgGR7/YNtZV4oqkaAdLBGgIR0ClLpxmseXBdX2UKGgGR7/TNs3yZrpJaAdLA2gIR0ClLmBllK9PdX2UKGgGR7/OI5YHPeHjaAdLA2gIR0ClLhjPWxyGdX2UKGgGR7/O53C9AX2vaAdLA2gIR0ClLcUtI066dX2UKGgGR7/C9SMtK7I1aAdLAmgIR0ClLrDWK/EgdX2UKGgGR7+kz0pVjqfOaAdLAWgIR0ClLdBkI5YHdX2UKGgGR7/BxvNu+AVgaAdLAmgIR0ClLnRlpXZHdX2UKGgGR7/LbSJCSidraAdLA2gIR0ClLsdoWYWtdX2UKGgGR7/YxjJ+2E00aAdLBGgIR0ClLjr/bTMJdX2UKGgGR7/SELpiZv1laAdLA2gIR0ClLec+JP69dX2UKGgGR7/PqKxcE/0NaAdLA2gIR0ClLoqiXY16dX2UKGgGR7/MPGyX2M86aAdLA2gIR0ClLlM0P6KtdX2UKGgGR7/aczqKP4mDaAdLBGgIR0ClLge2/i5vdX2UKGgGR7/fNIsiB5HFaAdLBGgIR0ClLqtCzC1rdX2UKGgGR7+zcynDR+jNaAdLAmgIR0ClLmRKg7HRdX2UKGgGR7/XLeANG3F2aAdLBmgIR0ClLvkwevIPdX2UKGgGR7+0Yht+CsfaaAdLAmgIR0ClLhxxcVxkdX2UKGgGR7/AM3qAz544aAdLAmgIR0ClLsUNBnjAdX2UKGgGR7/DiMo+fRNRaAdLAmgIR0ClLnzcynDSdX2UKGgGR7+4WpIczZYgaAdLAmgIR0ClLxDE3sHCdX2UKGgGR7+kkB0ZFXq8aAdLAWgIR0ClLsxEv0yydX2UKGgGR7/QbgTAWSEEaAdLA2gIR0ClLja0hNdrdX2UKGgGR7/RnXumaYu1aAdLA2gIR0ClLpHBciW3dX2UKGgGR7/SJq7Ackt3aAdLA2gIR0ClLuDr7fpEdX2UKGgGR7+0DLbHp8neaAdLAmgIR0ClLkTQeFL4dX2UKGgGR7/BXaJyhi9aaAdLAmgIR0ClLvNxEORUdX2UKGgGR7/TsasIVuaXaAdLA2gIR0ClLqvGhmGudX2UKGgGR7+5vES/TLGJaAdLAmgIR0ClLlgUcn3MdX2UKGgGR7/LPiT+vQnhaAdLA2gIR0ClLm6HCXQddX2UKGgGR7/VvNu+AVfvaAdLBGgIR0ClLs0gbIcSdX2UKGgGR7+kXWOIZZSvaAdLAWgIR0ClLnlbNbC8dX2UKGgGR7/pBllK9PDYaAdLC2gIR0ClL2iWu5jIdX2UKGgGR7/AiUPhAGB4aAdLAmgIR0ClLtxUWEbpdX2UKGgGR7/A7T2FnIyTaAdLAmgIR0ClL3b+1jRVdX2UKGgGR7/YUYsNDtw8aAdLBWgIR0ClLqDM3ZPEdX2UKGgGR7/ZCVbA1vVFaAdLBGgIR0ClLvzBRAKOdX2UKGgGR7/PwiqyWzF/aAdLA2gIR0ClL5EHdGiIdX2UKGgGR7/rvBrN4Z/DaAdLC2gIR0ClL00gjhUBdX2UKGgGR7+dtl7MPjGUaAdLAWgIR0ClLwUPpY9xdX2UKGgGR7/ANQTEit7saAdLAmgIR0ClLrF+Vkc0dX2UKGgGR7+dEsrd30PIaAdLAWgIR0ClL1TrNW2gdX2UKGgGR7/BFNL127nQaAdLAmgIR0ClL6EXk5p8dX2UKGgGR7+37Jnxri2laAdLAmgIR0ClL7ObqhUSdX2UKGgGR7/WCiRGMGX5aAdLA2gIR0ClL29Aood/dX2UKGgGR7/VCiAUcn3MaAdLBGgIR0ClLyenhsIndX2UKGgGR7/dVKPGQ0XQaAdLBGgIR0ClLtPqs2ehdX2UKGgGR7/Emqo60Y0maAdLAmgIR0ClL3/y5I6KdX2UKGgGR7+3FJg9eQdTaAdLAmgIR0ClLuPJiiItdX2UKGgGR7/TMlC1JDmbaAdLA2gIR0ClL8ycTakAdX2UKGgGR7/aw0waisXBaAdLBGgIR0ClL0m4AjptdX2UKGgGR7/Kf7Jnxri3aAdLA2gIR0ClL5ju0CzUdX2UKGgGR7/NdjXnQpnZaAdLA2gIR0ClLvyimEXddX2UKGgGR7/J40uUUwi8aAdLA2gIR0ClL+Tk6tDEdX2UKGgGR7+2wIMSbpeNaAdLAmgIR0ClL1hVMmF8dX2UKGgGR7997fHggow3aAdLAWgIR0ClL+12icoZdX2UKGgGR7+946fapPykaAdLAmgIR0ClL6mZVn27dX2UKGgGR7/M2gnMMZxaaAdLA2gIR0ClLxSMtK7JdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:484e05a59793adace3ee136342eb1f3ea9890fdd083e78c19df8f9eb89af7d34
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223b14d75142774637f0e55d0dabb170c3e447a09fd124cebe1400d71901d032
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f28e067ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f294201b140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696927144574073437, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAj7LBPcaV1L6XgRc/9lR/PxuM2T7iEms+96U8P8lNmj83GkC+D46EPrA9AruCTcw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6BO+Psc0cr/yLDY/rtDPP311KT+dX46/2Zz9PjSpyD+o/YQ+yfodPw8trz/gdL4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPssE9xpXUvpeBFz812dQ+l1rWv02elj/2VH8/G4zZPuISaz68pcU/l6nUPz/Ykr/3pTw/yU2aPzcaQL7rIa0/+S5eP2uLfD4PjoQ+sD0Cu4JNzD4Ujuk+gY31ubduvz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.09457885 -0.41520518 0.59182113]\n [ 0.99739015 0.42489704 0.22956422]\n [ 0.7369074 1.2054988 -0.1876 ]\n [ 0.25889632 -0.00198732 0.39902884]]", "desired_goal": "[[ 0.37124562 -0.9461178 0.7116233 ]\n [ 1.6235559 0.661949 -1.1122929 ]\n [ 0.49533728 1.5676637 0.25974774]\n [ 0.6171079 1.3685626 0.37198544]]", "observation": "[[ 9.4578855e-02 -4.1520518e-01 5.9182113e-01 4.1571966e-01\n -1.6746396e+00 1.1767060e+00]\n [ 9.9739015e-01 4.2489704e-01 2.2956422e-01 1.5441203e+00\n 1.6614255e+00 -1.1472243e+00]\n [ 7.3690742e-01 1.2054988e+00 -1.8760000e-01 1.3525976e+00\n 8.6790425e-01 2.4662559e-01]\n [ 2.5889632e-01 -1.9873194e-03 3.9902884e-01 4.5616210e-01\n -4.6835470e-04 3.7389156e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2e3yvT2xor1+1yM+pkOMPR+St7yoDQk9fsWJvbHIKz1K0xw98NhvvVRwC763gP09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11861772 -0.07943962 0.16000172]\n [ 0.0684884 -0.02240854 0.03346029]\n [-0.06727122 0.04193944 0.03828744]\n [-0.0585565 -0.13617069 0.12378066]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7Nzjm0VrRCMAWyUSwKMAXSUR0ClLLEW69TQdX2UKGgGR7/f7wazeGfxaAdLCGgIR0ClLQxBu4wzdX2UKGgGR7/F3AVO9FnaaAdLA2gIR0ClLaAeJYT1dX2UKGgGR7+yi7CiyprDaAdLAmgIR0ClLVudoWYXdX2UKGgGR7+lxsEaESM+aAdLAWgIR0ClLadc0LtvdX2UKGgGR7/LoB7u2JBPaAdLA2gIR0ClLSFkQPI5dX2UKGgGR7/D3B55Z8rqaAdLAmgIR0ClLbi6xxDLdX2UKGgGR7/GX8fms/6gaAdLA2gIR0ClLXTImw7ldX2UKGgGR7+9/+bVjI7vaAdLAmgIR0ClLcpkPMB7dX2UKGgGR7/KF/x2B8QaaAdLA2gIR0ClLT4Uvf0mdX2UKGgGR7/SSA6Mir1eaAdLA2gIR0ClLY40EX+EdX2UKGgGR7/TLqD9OymiaAdLA2gIR0ClLeSN4qwydX2UKGgGR7/JpWV/tpmFaAdLA2gIR0ClLVekxh2GdX2UKGgGR7/UXNC7btZ3aAdLA2gIR0ClLacEFGG3dX2UKGgGR7+7alDWsijdaAdLAmgIR0ClLWVIqbz9dX2UKGgGR7/O+NcW0qpcaAdLA2gIR0ClLfmjTKDDdX2UKGgGR7/IV9nbqQiiaAdLA2gIR0ClLbweNkvsdX2UKGgGR7+24MF2V3UyaAdLAmgIR0ClLXP+fh/BdX2UKGgGR7/Sr+o99tuUaAdLA2gIR0ClLhGqgh8qdX2UKGgGR7+7CTEBKcuraAdLAmgIR0ClLYTr3TNMdX2UKGgGR7/HVNHpbD/EaAdLA2gIR0ClLdT/ZM+NdX2UKGgGR7/3VJpWV/tqaAdLEmgIR0ClLUD4xk/bdX2UKGgGR7/VShakhzNmaAdLA2gIR0ClLiloDgZTdX2UKGgGR7/KkAxSHdoGaAdLA2gIR0ClLZzcAR02dX2UKGgGR7/Nrt3OfNA1aAdLA2gIR0ClLfC9IwuedX2UKGgGR7+4lWwNb1RMaAdLAmgIR0ClLjzfzjFRdX2UKGgGR7/DBUJfICEIaAdLAmgIR0ClLbBCtzS1dX2UKGgGR7/S1MM7U5MlaAdLA2gIR0ClLVyPMjeLdX2UKGgGR7+kt03fhuO0aAdLAWgIR0ClLkT0xubadX2UKGgGR7+yhg3Lmp2maAdLAmgIR0ClLgCZ4Oc2dX2UKGgGR7+4s9SuQp4KaAdLAmgIR0ClLcCRnvlVdX2UKGgGR7/Qmv4dp7C0aAdLA2gIR0ClLXRu89OidX2UKGgGR7/NgNPP9kz5aAdLA2gIR0ClLl/JvHcUdX2UKGgGR7/RJhvze40/aAdLA2gIR0ClLhtvfj0ddX2UKGgGR7/SBZZB9kSVaAdLA2gIR0ClLdp+c6NmdX2UKGgGR7+1Y8uBczInaAdLAmgIR0ClLYarmyPddX2UKGgGR7/QyqdYnv2HaAdLA2gIR0ClLjEK/mDEdX2UKGgGR7/FzzVc2R7raAdLAmgIR0ClLejM/yG0dX2UKGgGR7/E2a2F36hyaAdLAmgIR0ClLZTufEn9dX2UKGgGR7/XC66J66ataAdLBGgIR0ClLn1yWAwxdX2UKGgGR7/VDIBBAv+PaAdLA2gIR0ClLkkGZ/kOdX2UKGgGR7/Nk+X7cfvGaAdLA2gIR0ClLgDG96C2dX2UKGgGR7/JxhlUZNwjaAdLA2gIR0ClLa0RFqi5dX2UKGgGR7/YNtZV4oqkaAdLBGgIR0ClLpxmseXBdX2UKGgGR7/TNs3yZrpJaAdLA2gIR0ClLmBllK9PdX2UKGgGR7/OI5YHPeHjaAdLA2gIR0ClLhjPWxyGdX2UKGgGR7/O53C9AX2vaAdLA2gIR0ClLcUtI066dX2UKGgGR7/C9SMtK7I1aAdLAmgIR0ClLrDWK/EgdX2UKGgGR7+kz0pVjqfOaAdLAWgIR0ClLdBkI5YHdX2UKGgGR7/BxvNu+AVgaAdLAmgIR0ClLnRlpXZHdX2UKGgGR7/LbSJCSidraAdLA2gIR0ClLsdoWYWtdX2UKGgGR7/YxjJ+2E00aAdLBGgIR0ClLjr/bTMJdX2UKGgGR7/SELpiZv1laAdLA2gIR0ClLec+JP69dX2UKGgGR7/PqKxcE/0NaAdLA2gIR0ClLoqiXY16dX2UKGgGR7/MPGyX2M86aAdLA2gIR0ClLlM0P6KtdX2UKGgGR7/aczqKP4mDaAdLBGgIR0ClLge2/i5vdX2UKGgGR7/fNIsiB5HFaAdLBGgIR0ClLqtCzC1rdX2UKGgGR7+zcynDR+jNaAdLAmgIR0ClLmRKg7HRdX2UKGgGR7/XLeANG3F2aAdLBmgIR0ClLvkwevIPdX2UKGgGR7+0Yht+CsfaaAdLAmgIR0ClLhxxcVxkdX2UKGgGR7/AM3qAz544aAdLAmgIR0ClLsUNBnjAdX2UKGgGR7/DiMo+fRNRaAdLAmgIR0ClLnzcynDSdX2UKGgGR7+4WpIczZYgaAdLAmgIR0ClLxDE3sHCdX2UKGgGR7+kkB0ZFXq8aAdLAWgIR0ClLsxEv0yydX2UKGgGR7/QbgTAWSEEaAdLA2gIR0ClLja0hNdrdX2UKGgGR7/RnXumaYu1aAdLA2gIR0ClLpHBciW3dX2UKGgGR7/SJq7Ackt3aAdLA2gIR0ClLuDr7fpEdX2UKGgGR7+0DLbHp8neaAdLAmgIR0ClLkTQeFL4dX2UKGgGR7/BXaJyhi9aaAdLAmgIR0ClLvNxEORUdX2UKGgGR7/TsasIVuaXaAdLA2gIR0ClLqvGhmGudX2UKGgGR7+5vES/TLGJaAdLAmgIR0ClLlgUcn3MdX2UKGgGR7/LPiT+vQnhaAdLA2gIR0ClLm6HCXQddX2UKGgGR7/VvNu+AVfvaAdLBGgIR0ClLs0gbIcSdX2UKGgGR7+kXWOIZZSvaAdLAWgIR0ClLnlbNbC8dX2UKGgGR7/pBllK9PDYaAdLC2gIR0ClL2iWu5jIdX2UKGgGR7/AiUPhAGB4aAdLAmgIR0ClLtxUWEbpdX2UKGgGR7/A7T2FnIyTaAdLAmgIR0ClL3b+1jRVdX2UKGgGR7/YUYsNDtw8aAdLBWgIR0ClLqDM3ZPEdX2UKGgGR7/ZCVbA1vVFaAdLBGgIR0ClLvzBRAKOdX2UKGgGR7/PwiqyWzF/aAdLA2gIR0ClL5EHdGiIdX2UKGgGR7/rvBrN4Z/DaAdLC2gIR0ClL00gjhUBdX2UKGgGR7+dtl7MPjGUaAdLAWgIR0ClLwUPpY9xdX2UKGgGR7/ANQTEit7saAdLAmgIR0ClLrF+Vkc0dX2UKGgGR7+dEsrd30PIaAdLAWgIR0ClL1TrNW2gdX2UKGgGR7/BFNL127nQaAdLAmgIR0ClL6EXk5p8dX2UKGgGR7+37Jnxri2laAdLAmgIR0ClL7ObqhUSdX2UKGgGR7/WCiRGMGX5aAdLA2gIR0ClL29Aood/dX2UKGgGR7/VCiAUcn3MaAdLBGgIR0ClLyenhsIndX2UKGgGR7/dVKPGQ0XQaAdLBGgIR0ClLtPqs2ehdX2UKGgGR7/Emqo60Y0maAdLAmgIR0ClL3/y5I6KdX2UKGgGR7+3FJg9eQdTaAdLAmgIR0ClLuPJiiItdX2UKGgGR7/TMlC1JDmbaAdLA2gIR0ClL8ycTakAdX2UKGgGR7/aw0waisXBaAdLBGgIR0ClL0m4AjptdX2UKGgGR7/Kf7Jnxri3aAdLA2gIR0ClL5ju0CzUdX2UKGgGR7/NdjXnQpnZaAdLA2gIR0ClLvyimEXddX2UKGgGR7/J40uUUwi8aAdLA2gIR0ClL+Tk6tDEdX2UKGgGR7+2wIMSbpeNaAdLAmgIR0ClL1hVMmF8dX2UKGgGR7997fHggow3aAdLAWgIR0ClL+12icoZdX2UKGgGR7+946fapPykaAdLAmgIR0ClL6mZVn27dX2UKGgGR7/M2gnMMZxaaAdLA2gIR0ClLxSMtK7JdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (706 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22637669136747718, "std_reward": 0.1075892758550785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-10T09:24:36.334653"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4407d15d5bbdc58d76253bcc1aafd3feb9f61097f2b18142abb84ebbb748adb
|
3 |
+
size 2623
|