Anders L|hr commited on
Commit
0272046
1 Parent(s): d46be2b

Best 5 class model

Browse files
README.md ADDED
@@ -0,0 +1,846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: anderloh/Huggingface-wav2vec-2Class-easy-train-test
3
+ tags:
4
+ - audio-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: wav2vec2-2Class-easy-train-test-large
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # wav2vec2-2Class-easy-train-test-large
17
+
18
+ This model is a fine-tuned version of [anderloh/Huggingface-wav2vec-2Class-easy-train-test](https://huggingface.co/anderloh/Huggingface-wav2vec-2Class-easy-train-test) on the anderloh/Master2ClassEasy dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1994
21
+ - Accuracy: 0.9623
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 0
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 800.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | No log | 0.98 | 11 | 0.7003 | 0.4088 |
57
+ | No log | 1.96 | 22 | 0.7001 | 0.4088 |
58
+ | No log | 2.93 | 33 | 0.6997 | 0.4151 |
59
+ | No log | 4.0 | 45 | 0.6991 | 0.4214 |
60
+ | 0.6976 | 4.98 | 56 | 0.6985 | 0.4277 |
61
+ | 0.6976 | 5.96 | 67 | 0.6977 | 0.4403 |
62
+ | 0.6976 | 6.93 | 78 | 0.6969 | 0.4465 |
63
+ | 0.6976 | 8.0 | 90 | 0.6957 | 0.4654 |
64
+ | 0.6952 | 8.98 | 101 | 0.6945 | 0.4654 |
65
+ | 0.6952 | 9.96 | 112 | 0.6934 | 0.4780 |
66
+ | 0.6952 | 10.93 | 123 | 0.6921 | 0.4906 |
67
+ | 0.6952 | 12.0 | 135 | 0.6906 | 0.5472 |
68
+ | 0.6952 | 12.98 | 146 | 0.6892 | 0.6101 |
69
+ | 0.6911 | 13.96 | 157 | 0.6878 | 0.6038 |
70
+ | 0.6911 | 14.93 | 168 | 0.6863 | 0.5912 |
71
+ | 0.6911 | 16.0 | 180 | 0.6847 | 0.5912 |
72
+ | 0.6911 | 16.98 | 191 | 0.6831 | 0.5849 |
73
+ | 0.6852 | 17.96 | 202 | 0.6815 | 0.5849 |
74
+ | 0.6852 | 18.93 | 213 | 0.6800 | 0.5849 |
75
+ | 0.6852 | 20.0 | 225 | 0.6782 | 0.5849 |
76
+ | 0.6852 | 20.98 | 236 | 0.6765 | 0.5849 |
77
+ | 0.6852 | 21.96 | 247 | 0.6750 | 0.5849 |
78
+ | 0.6783 | 22.93 | 258 | 0.6732 | 0.5849 |
79
+ | 0.6783 | 24.0 | 270 | 0.6713 | 0.5849 |
80
+ | 0.6783 | 24.98 | 281 | 0.6695 | 0.5849 |
81
+ | 0.6783 | 25.96 | 292 | 0.6674 | 0.5849 |
82
+ | 0.6676 | 26.93 | 303 | 0.6654 | 0.5849 |
83
+ | 0.6676 | 28.0 | 315 | 0.6631 | 0.5849 |
84
+ | 0.6676 | 28.98 | 326 | 0.6606 | 0.5849 |
85
+ | 0.6676 | 29.96 | 337 | 0.6579 | 0.5849 |
86
+ | 0.6676 | 30.93 | 348 | 0.6539 | 0.5849 |
87
+ | 0.6516 | 32.0 | 360 | 0.6493 | 0.5975 |
88
+ | 0.6516 | 32.98 | 371 | 0.6441 | 0.6101 |
89
+ | 0.6516 | 33.96 | 382 | 0.6349 | 0.6226 |
90
+ | 0.6516 | 34.93 | 393 | 0.6257 | 0.6289 |
91
+ | 0.6124 | 36.0 | 405 | 0.6117 | 0.6415 |
92
+ | 0.6124 | 36.98 | 416 | 0.5911 | 0.6667 |
93
+ | 0.6124 | 37.96 | 427 | 0.5672 | 0.6918 |
94
+ | 0.6124 | 38.93 | 438 | 0.5392 | 0.7233 |
95
+ | 0.5073 | 40.0 | 450 | 0.5042 | 0.7547 |
96
+ | 0.5073 | 40.98 | 461 | 0.4790 | 0.7673 |
97
+ | 0.5073 | 41.96 | 472 | 0.4759 | 0.7799 |
98
+ | 0.5073 | 42.93 | 483 | 0.4370 | 0.7987 |
99
+ | 0.5073 | 44.0 | 495 | 0.4352 | 0.7987 |
100
+ | 0.3489 | 44.98 | 506 | 0.4422 | 0.7987 |
101
+ | 0.3489 | 45.96 | 517 | 0.4154 | 0.8050 |
102
+ | 0.3489 | 46.93 | 528 | 0.4131 | 0.8050 |
103
+ | 0.3489 | 48.0 | 540 | 0.3976 | 0.8113 |
104
+ | 0.2962 | 48.98 | 551 | 0.3940 | 0.8113 |
105
+ | 0.2962 | 49.96 | 562 | 0.3715 | 0.8239 |
106
+ | 0.2962 | 50.93 | 573 | 0.3495 | 0.8428 |
107
+ | 0.2962 | 52.0 | 585 | 0.3481 | 0.8365 |
108
+ | 0.2962 | 52.98 | 596 | 0.3817 | 0.8176 |
109
+ | 0.2573 | 53.96 | 607 | 0.3412 | 0.8491 |
110
+ | 0.2573 | 54.93 | 618 | 0.3293 | 0.8491 |
111
+ | 0.2573 | 56.0 | 630 | 0.3548 | 0.8428 |
112
+ | 0.2573 | 56.98 | 641 | 0.3044 | 0.8428 |
113
+ | 0.2279 | 57.96 | 652 | 0.3235 | 0.8491 |
114
+ | 0.2279 | 58.93 | 663 | 0.3371 | 0.8491 |
115
+ | 0.2279 | 60.0 | 675 | 0.3128 | 0.8491 |
116
+ | 0.2279 | 60.98 | 686 | 0.3211 | 0.8553 |
117
+ | 0.2279 | 61.96 | 697 | 0.3030 | 0.8616 |
118
+ | 0.2167 | 62.93 | 708 | 0.2970 | 0.8616 |
119
+ | 0.2167 | 64.0 | 720 | 0.2995 | 0.8679 |
120
+ | 0.2167 | 64.98 | 731 | 0.2867 | 0.8742 |
121
+ | 0.2167 | 65.96 | 742 | 0.2636 | 0.8931 |
122
+ | 0.207 | 66.93 | 753 | 0.2848 | 0.8805 |
123
+ | 0.207 | 68.0 | 765 | 0.2751 | 0.8868 |
124
+ | 0.207 | 68.98 | 776 | 0.2564 | 0.8931 |
125
+ | 0.207 | 69.96 | 787 | 0.2544 | 0.8931 |
126
+ | 0.207 | 70.93 | 798 | 0.2954 | 0.8742 |
127
+ | 0.1899 | 72.0 | 810 | 0.2517 | 0.8931 |
128
+ | 0.1899 | 72.98 | 821 | 0.2506 | 0.8931 |
129
+ | 0.1899 | 73.96 | 832 | 0.2434 | 0.8931 |
130
+ | 0.1899 | 74.93 | 843 | 0.2383 | 0.8994 |
131
+ | 0.1801 | 76.0 | 855 | 0.2346 | 0.8994 |
132
+ | 0.1801 | 76.98 | 866 | 0.2298 | 0.8994 |
133
+ | 0.1801 | 77.96 | 877 | 0.2404 | 0.9057 |
134
+ | 0.1801 | 78.93 | 888 | 0.2674 | 0.8931 |
135
+ | 0.1692 | 80.0 | 900 | 0.2232 | 0.8994 |
136
+ | 0.1692 | 80.98 | 911 | 0.2390 | 0.8994 |
137
+ | 0.1692 | 81.96 | 922 | 0.2058 | 0.8931 |
138
+ | 0.1692 | 82.93 | 933 | 0.2114 | 0.9057 |
139
+ | 0.1692 | 84.0 | 945 | 0.2483 | 0.8994 |
140
+ | 0.1691 | 84.98 | 956 | 0.2259 | 0.9119 |
141
+ | 0.1691 | 85.96 | 967 | 0.2024 | 0.9119 |
142
+ | 0.1691 | 86.93 | 978 | 0.2019 | 0.8994 |
143
+ | 0.1691 | 88.0 | 990 | 0.1963 | 0.9245 |
144
+ | 0.1609 | 88.98 | 1001 | 0.2158 | 0.9119 |
145
+ | 0.1609 | 89.96 | 1012 | 0.1977 | 0.9119 |
146
+ | 0.1609 | 90.93 | 1023 | 0.1979 | 0.9182 |
147
+ | 0.1609 | 92.0 | 1035 | 0.2036 | 0.9119 |
148
+ | 0.1609 | 92.98 | 1046 | 0.1977 | 0.9245 |
149
+ | 0.1516 | 93.96 | 1057 | 0.1974 | 0.9182 |
150
+ | 0.1516 | 94.93 | 1068 | 0.1994 | 0.9245 |
151
+ | 0.1516 | 96.0 | 1080 | 0.1955 | 0.9119 |
152
+ | 0.1516 | 96.98 | 1091 | 0.1948 | 0.9119 |
153
+ | 0.1386 | 97.96 | 1102 | 0.1946 | 0.9245 |
154
+ | 0.1386 | 98.93 | 1113 | 0.1932 | 0.9245 |
155
+ | 0.1386 | 100.0 | 1125 | 0.1842 | 0.9371 |
156
+ | 0.1386 | 100.98 | 1136 | 0.1884 | 0.9308 |
157
+ | 0.1386 | 101.96 | 1147 | 0.1900 | 0.9371 |
158
+ | 0.1279 | 102.93 | 1158 | 0.1841 | 0.9308 |
159
+ | 0.1279 | 104.0 | 1170 | 0.1921 | 0.9245 |
160
+ | 0.1279 | 104.98 | 1181 | 0.1993 | 0.9245 |
161
+ | 0.1279 | 105.96 | 1192 | 0.1946 | 0.9308 |
162
+ | 0.1258 | 106.93 | 1203 | 0.1896 | 0.9308 |
163
+ | 0.1258 | 108.0 | 1215 | 0.1884 | 0.9308 |
164
+ | 0.1258 | 108.98 | 1226 | 0.1794 | 0.9434 |
165
+ | 0.1258 | 109.96 | 1237 | 0.1859 | 0.9245 |
166
+ | 0.1258 | 110.93 | 1248 | 0.2195 | 0.9119 |
167
+ | 0.1258 | 112.0 | 1260 | 0.2083 | 0.9182 |
168
+ | 0.1258 | 112.98 | 1271 | 0.2120 | 0.9245 |
169
+ | 0.1258 | 113.96 | 1282 | 0.2066 | 0.9308 |
170
+ | 0.1258 | 114.93 | 1293 | 0.1931 | 0.9308 |
171
+ | 0.1023 | 116.0 | 1305 | 0.1900 | 0.9308 |
172
+ | 0.1023 | 116.98 | 1316 | 0.2029 | 0.9308 |
173
+ | 0.1023 | 117.96 | 1327 | 0.1951 | 0.9245 |
174
+ | 0.1023 | 118.93 | 1338 | 0.2084 | 0.9119 |
175
+ | 0.0997 | 120.0 | 1350 | 0.2159 | 0.9245 |
176
+ | 0.0997 | 120.98 | 1361 | 0.2166 | 0.9245 |
177
+ | 0.0997 | 121.96 | 1372 | 0.1973 | 0.9308 |
178
+ | 0.0997 | 122.93 | 1383 | 0.1851 | 0.9245 |
179
+ | 0.0997 | 124.0 | 1395 | 0.2067 | 0.9245 |
180
+ | 0.1021 | 124.98 | 1406 | 0.1953 | 0.9245 |
181
+ | 0.1021 | 125.96 | 1417 | 0.1765 | 0.9434 |
182
+ | 0.1021 | 126.93 | 1428 | 0.1878 | 0.9308 |
183
+ | 0.1021 | 128.0 | 1440 | 0.2071 | 0.9245 |
184
+ | 0.0883 | 128.98 | 1451 | 0.2241 | 0.9182 |
185
+ | 0.0883 | 129.96 | 1462 | 0.2348 | 0.9119 |
186
+ | 0.0883 | 130.93 | 1473 | 0.2475 | 0.9057 |
187
+ | 0.0883 | 132.0 | 1485 | 0.2160 | 0.9182 |
188
+ | 0.0883 | 132.98 | 1496 | 0.2090 | 0.9308 |
189
+ | 0.0769 | 133.96 | 1507 | 0.2147 | 0.9245 |
190
+ | 0.0769 | 134.93 | 1518 | 0.2201 | 0.9245 |
191
+ | 0.0769 | 136.0 | 1530 | 0.2372 | 0.9182 |
192
+ | 0.0769 | 136.98 | 1541 | 0.2199 | 0.9182 |
193
+ | 0.0786 | 137.96 | 1552 | 0.2087 | 0.9182 |
194
+ | 0.0786 | 138.93 | 1563 | 0.1878 | 0.9308 |
195
+ | 0.0786 | 140.0 | 1575 | 0.1915 | 0.9371 |
196
+ | 0.0786 | 140.98 | 1586 | 0.2317 | 0.9245 |
197
+ | 0.0786 | 141.96 | 1597 | 0.2865 | 0.8931 |
198
+ | 0.0714 | 142.93 | 1608 | 0.2300 | 0.9245 |
199
+ | 0.0714 | 144.0 | 1620 | 0.2727 | 0.9057 |
200
+ | 0.0714 | 144.98 | 1631 | 0.2811 | 0.9057 |
201
+ | 0.0714 | 145.96 | 1642 | 0.2101 | 0.9371 |
202
+ | 0.0702 | 146.93 | 1653 | 0.2036 | 0.9308 |
203
+ | 0.0702 | 148.0 | 1665 | 0.2215 | 0.9371 |
204
+ | 0.0702 | 148.98 | 1676 | 0.2136 | 0.9182 |
205
+ | 0.0702 | 149.96 | 1687 | 0.2056 | 0.9434 |
206
+ | 0.0702 | 150.93 | 1698 | 0.2003 | 0.9371 |
207
+ | 0.0676 | 152.0 | 1710 | 0.2250 | 0.9308 |
208
+ | 0.0676 | 152.98 | 1721 | 0.1911 | 0.9560 |
209
+ | 0.0676 | 153.96 | 1732 | 0.2190 | 0.9245 |
210
+ | 0.0676 | 154.93 | 1743 | 0.1976 | 0.9308 |
211
+ | 0.0674 | 156.0 | 1755 | 0.1874 | 0.9497 |
212
+ | 0.0674 | 156.98 | 1766 | 0.2023 | 0.9371 |
213
+ | 0.0674 | 157.96 | 1777 | 0.2153 | 0.9497 |
214
+ | 0.0674 | 158.93 | 1788 | 0.2245 | 0.9434 |
215
+ | 0.0548 | 160.0 | 1800 | 0.2432 | 0.9245 |
216
+ | 0.0548 | 160.98 | 1811 | 0.2071 | 0.9434 |
217
+ | 0.0548 | 161.96 | 1822 | 0.1837 | 0.9497 |
218
+ | 0.0548 | 162.93 | 1833 | 0.1916 | 0.9497 |
219
+ | 0.0548 | 164.0 | 1845 | 0.2221 | 0.9497 |
220
+ | 0.0616 | 164.98 | 1856 | 0.2120 | 0.9497 |
221
+ | 0.0616 | 165.96 | 1867 | 0.1888 | 0.9560 |
222
+ | 0.0616 | 166.93 | 1878 | 0.1971 | 0.9497 |
223
+ | 0.0616 | 168.0 | 1890 | 0.2161 | 0.9434 |
224
+ | 0.0467 | 168.98 | 1901 | 0.2282 | 0.9371 |
225
+ | 0.0467 | 169.96 | 1912 | 0.3118 | 0.9057 |
226
+ | 0.0467 | 170.93 | 1923 | 0.2319 | 0.9497 |
227
+ | 0.0467 | 172.0 | 1935 | 0.2740 | 0.9308 |
228
+ | 0.0467 | 172.98 | 1946 | 0.2666 | 0.9308 |
229
+ | 0.0609 | 173.96 | 1957 | 0.2315 | 0.9434 |
230
+ | 0.0609 | 174.93 | 1968 | 0.2229 | 0.9371 |
231
+ | 0.0609 | 176.0 | 1980 | 0.2158 | 0.9434 |
232
+ | 0.0609 | 176.98 | 1991 | 0.2226 | 0.9434 |
233
+ | 0.0522 | 177.96 | 2002 | 0.2224 | 0.9308 |
234
+ | 0.0522 | 178.93 | 2013 | 0.2138 | 0.9434 |
235
+ | 0.0522 | 180.0 | 2025 | 0.2177 | 0.9371 |
236
+ | 0.0522 | 180.98 | 2036 | 0.1917 | 0.9434 |
237
+ | 0.0522 | 181.96 | 2047 | 0.1974 | 0.9560 |
238
+ | 0.0515 | 182.93 | 2058 | 0.2198 | 0.9497 |
239
+ | 0.0515 | 184.0 | 2070 | 0.2425 | 0.9245 |
240
+ | 0.0515 | 184.98 | 2081 | 0.2449 | 0.9308 |
241
+ | 0.0515 | 185.96 | 2092 | 0.2346 | 0.9308 |
242
+ | 0.045 | 186.93 | 2103 | 0.2331 | 0.9434 |
243
+ | 0.045 | 188.0 | 2115 | 0.2661 | 0.9371 |
244
+ | 0.045 | 188.98 | 2126 | 0.2291 | 0.9371 |
245
+ | 0.045 | 189.96 | 2137 | 0.2348 | 0.9371 |
246
+ | 0.045 | 190.93 | 2148 | 0.2309 | 0.9434 |
247
+ | 0.0403 | 192.0 | 2160 | 0.2789 | 0.9245 |
248
+ | 0.0403 | 192.98 | 2171 | 0.2540 | 0.9308 |
249
+ | 0.0403 | 193.96 | 2182 | 0.2372 | 0.9371 |
250
+ | 0.0403 | 194.93 | 2193 | 0.2508 | 0.9308 |
251
+ | 0.0476 | 196.0 | 2205 | 0.2194 | 0.9497 |
252
+ | 0.0476 | 196.98 | 2216 | 0.2307 | 0.9371 |
253
+ | 0.0476 | 197.96 | 2227 | 0.2719 | 0.9308 |
254
+ | 0.0476 | 198.93 | 2238 | 0.2804 | 0.9245 |
255
+ | 0.0457 | 200.0 | 2250 | 0.2755 | 0.9308 |
256
+ | 0.0457 | 200.98 | 2261 | 0.2353 | 0.9308 |
257
+ | 0.0457 | 201.96 | 2272 | 0.2189 | 0.9371 |
258
+ | 0.0457 | 202.93 | 2283 | 0.2163 | 0.9371 |
259
+ | 0.0457 | 204.0 | 2295 | 0.2110 | 0.9497 |
260
+ | 0.0393 | 204.98 | 2306 | 0.2316 | 0.9434 |
261
+ | 0.0393 | 205.96 | 2317 | 0.2465 | 0.9308 |
262
+ | 0.0393 | 206.93 | 2328 | 0.2376 | 0.9434 |
263
+ | 0.0393 | 208.0 | 2340 | 0.2171 | 0.9434 |
264
+ | 0.0443 | 208.98 | 2351 | 0.2395 | 0.9497 |
265
+ | 0.0443 | 209.96 | 2362 | 0.2906 | 0.8931 |
266
+ | 0.0443 | 210.93 | 2373 | 0.2608 | 0.9371 |
267
+ | 0.0443 | 212.0 | 2385 | 0.2321 | 0.9497 |
268
+ | 0.0443 | 212.98 | 2396 | 0.2464 | 0.9371 |
269
+ | 0.0539 | 213.96 | 2407 | 0.2442 | 0.9182 |
270
+ | 0.0539 | 214.93 | 2418 | 0.2512 | 0.9245 |
271
+ | 0.0539 | 216.0 | 2430 | 0.2265 | 0.9371 |
272
+ | 0.0539 | 216.98 | 2441 | 0.2127 | 0.9371 |
273
+ | 0.0415 | 217.96 | 2452 | 0.2844 | 0.9371 |
274
+ | 0.0415 | 218.93 | 2463 | 0.2489 | 0.9434 |
275
+ | 0.0415 | 220.0 | 2475 | 0.2120 | 0.9497 |
276
+ | 0.0415 | 220.98 | 2486 | 0.2015 | 0.9560 |
277
+ | 0.0415 | 221.96 | 2497 | 0.2510 | 0.9245 |
278
+ | 0.0325 | 222.93 | 2508 | 0.2875 | 0.9371 |
279
+ | 0.0325 | 224.0 | 2520 | 0.1994 | 0.9623 |
280
+ | 0.0325 | 224.98 | 2531 | 0.2033 | 0.9623 |
281
+ | 0.0325 | 225.96 | 2542 | 0.2391 | 0.9497 |
282
+ | 0.0249 | 226.93 | 2553 | 0.3044 | 0.9182 |
283
+ | 0.0249 | 228.0 | 2565 | 0.2825 | 0.9371 |
284
+ | 0.0249 | 228.98 | 2576 | 0.2347 | 0.9497 |
285
+ | 0.0249 | 229.96 | 2587 | 0.2405 | 0.9497 |
286
+ | 0.0249 | 230.93 | 2598 | 0.2537 | 0.9497 |
287
+ | 0.0358 | 232.0 | 2610 | 0.2709 | 0.9371 |
288
+ | 0.0358 | 232.98 | 2621 | 0.2445 | 0.9497 |
289
+ | 0.0358 | 233.96 | 2632 | 0.2436 | 0.9371 |
290
+ | 0.0358 | 234.93 | 2643 | 0.2227 | 0.9434 |
291
+ | 0.0345 | 236.0 | 2655 | 0.2208 | 0.9497 |
292
+ | 0.0345 | 236.98 | 2666 | 0.2293 | 0.9434 |
293
+ | 0.0345 | 237.96 | 2677 | 0.2160 | 0.9497 |
294
+ | 0.0345 | 238.93 | 2688 | 0.2086 | 0.9434 |
295
+ | 0.0339 | 240.0 | 2700 | 0.2640 | 0.9182 |
296
+ | 0.0339 | 240.98 | 2711 | 0.2954 | 0.9371 |
297
+ | 0.0339 | 241.96 | 2722 | 0.2507 | 0.9434 |
298
+ | 0.0339 | 242.93 | 2733 | 0.2273 | 0.9434 |
299
+ | 0.0339 | 244.0 | 2745 | 0.2422 | 0.9371 |
300
+ | 0.0309 | 244.98 | 2756 | 0.2931 | 0.9371 |
301
+ | 0.0309 | 245.96 | 2767 | 0.2695 | 0.9371 |
302
+ | 0.0309 | 246.93 | 2778 | 0.2646 | 0.9434 |
303
+ | 0.0309 | 248.0 | 2790 | 0.2315 | 0.9434 |
304
+ | 0.0301 | 248.98 | 2801 | 0.2270 | 0.9434 |
305
+ | 0.0301 | 249.96 | 2812 | 0.2447 | 0.9434 |
306
+ | 0.0301 | 250.93 | 2823 | 0.2586 | 0.9371 |
307
+ | 0.0301 | 252.0 | 2835 | 0.3039 | 0.9245 |
308
+ | 0.0301 | 252.98 | 2846 | 0.2777 | 0.9182 |
309
+ | 0.0335 | 253.96 | 2857 | 0.2566 | 0.9371 |
310
+ | 0.0335 | 254.93 | 2868 | 0.2603 | 0.9308 |
311
+ | 0.0335 | 256.0 | 2880 | 0.2699 | 0.9371 |
312
+ | 0.0335 | 256.98 | 2891 | 0.2838 | 0.9371 |
313
+ | 0.0249 | 257.96 | 2902 | 0.2573 | 0.9371 |
314
+ | 0.0249 | 258.93 | 2913 | 0.2652 | 0.9371 |
315
+ | 0.0249 | 260.0 | 2925 | 0.2622 | 0.9434 |
316
+ | 0.0249 | 260.98 | 2936 | 0.2583 | 0.9371 |
317
+ | 0.0249 | 261.96 | 2947 | 0.2324 | 0.9497 |
318
+ | 0.0308 | 262.93 | 2958 | 0.2782 | 0.9371 |
319
+ | 0.0308 | 264.0 | 2970 | 0.2519 | 0.9434 |
320
+ | 0.0308 | 264.98 | 2981 | 0.2634 | 0.9371 |
321
+ | 0.0308 | 265.96 | 2992 | 0.2647 | 0.9434 |
322
+ | 0.0282 | 266.93 | 3003 | 0.2588 | 0.9434 |
323
+ | 0.0282 | 268.0 | 3015 | 0.2315 | 0.9371 |
324
+ | 0.0282 | 268.98 | 3026 | 0.2293 | 0.9371 |
325
+ | 0.0282 | 269.96 | 3037 | 0.2375 | 0.9371 |
326
+ | 0.0282 | 270.93 | 3048 | 0.2439 | 0.9371 |
327
+ | 0.0347 | 272.0 | 3060 | 0.2542 | 0.9434 |
328
+ | 0.0347 | 272.98 | 3071 | 0.2402 | 0.9371 |
329
+ | 0.0347 | 273.96 | 3082 | 0.2365 | 0.9371 |
330
+ | 0.0347 | 274.93 | 3093 | 0.2757 | 0.9371 |
331
+ | 0.0211 | 276.0 | 3105 | 0.2508 | 0.9308 |
332
+ | 0.0211 | 276.98 | 3116 | 0.2395 | 0.9497 |
333
+ | 0.0211 | 277.96 | 3127 | 0.2536 | 0.9371 |
334
+ | 0.0211 | 278.93 | 3138 | 0.2685 | 0.9245 |
335
+ | 0.0248 | 280.0 | 3150 | 0.2975 | 0.9182 |
336
+ | 0.0248 | 280.98 | 3161 | 0.3234 | 0.9182 |
337
+ | 0.0248 | 281.96 | 3172 | 0.2707 | 0.9434 |
338
+ | 0.0248 | 282.93 | 3183 | 0.2250 | 0.9560 |
339
+ | 0.0248 | 284.0 | 3195 | 0.2319 | 0.9560 |
340
+ | 0.0243 | 284.98 | 3206 | 0.2525 | 0.9434 |
341
+ | 0.0243 | 285.96 | 3217 | 0.2661 | 0.9434 |
342
+ | 0.0243 | 286.93 | 3228 | 0.2844 | 0.9245 |
343
+ | 0.0243 | 288.0 | 3240 | 0.2571 | 0.9434 |
344
+ | 0.0223 | 288.98 | 3251 | 0.2517 | 0.9434 |
345
+ | 0.0223 | 289.96 | 3262 | 0.2636 | 0.9308 |
346
+ | 0.0223 | 290.93 | 3273 | 0.2694 | 0.9245 |
347
+ | 0.0223 | 292.0 | 3285 | 0.2306 | 0.9497 |
348
+ | 0.0223 | 292.98 | 3296 | 0.2377 | 0.9434 |
349
+ | 0.0234 | 293.96 | 3307 | 0.2698 | 0.9434 |
350
+ | 0.0234 | 294.93 | 3318 | 0.2839 | 0.9371 |
351
+ | 0.0234 | 296.0 | 3330 | 0.2502 | 0.9497 |
352
+ | 0.0234 | 296.98 | 3341 | 0.2704 | 0.9434 |
353
+ | 0.0256 | 297.96 | 3352 | 0.2879 | 0.9308 |
354
+ | 0.0256 | 298.93 | 3363 | 0.3078 | 0.9308 |
355
+ | 0.0256 | 300.0 | 3375 | 0.3160 | 0.9308 |
356
+ | 0.0256 | 300.98 | 3386 | 0.2706 | 0.9371 |
357
+ | 0.0256 | 301.96 | 3397 | 0.2504 | 0.9497 |
358
+ | 0.0224 | 302.93 | 3408 | 0.2454 | 0.9560 |
359
+ | 0.0224 | 304.0 | 3420 | 0.2480 | 0.9560 |
360
+ | 0.0224 | 304.98 | 3431 | 0.2511 | 0.9497 |
361
+ | 0.0224 | 305.96 | 3442 | 0.2796 | 0.9434 |
362
+ | 0.0155 | 306.93 | 3453 | 0.2932 | 0.9371 |
363
+ | 0.0155 | 308.0 | 3465 | 0.2997 | 0.9245 |
364
+ | 0.0155 | 308.98 | 3476 | 0.3044 | 0.9245 |
365
+ | 0.0155 | 309.96 | 3487 | 0.3256 | 0.9308 |
366
+ | 0.0155 | 310.93 | 3498 | 0.3401 | 0.9371 |
367
+ | 0.0226 | 312.0 | 3510 | 0.3068 | 0.9182 |
368
+ | 0.0226 | 312.98 | 3521 | 0.3017 | 0.9182 |
369
+ | 0.0226 | 313.96 | 3532 | 0.2941 | 0.9119 |
370
+ | 0.0226 | 314.93 | 3543 | 0.2840 | 0.9308 |
371
+ | 0.0153 | 316.0 | 3555 | 0.2900 | 0.9245 |
372
+ | 0.0153 | 316.98 | 3566 | 0.2923 | 0.9308 |
373
+ | 0.0153 | 317.96 | 3577 | 0.2965 | 0.9308 |
374
+ | 0.0153 | 318.93 | 3588 | 0.3202 | 0.9371 |
375
+ | 0.0183 | 320.0 | 3600 | 0.3325 | 0.9119 |
376
+ | 0.0183 | 320.98 | 3611 | 0.3441 | 0.9182 |
377
+ | 0.0183 | 321.96 | 3622 | 0.3004 | 0.9308 |
378
+ | 0.0183 | 322.93 | 3633 | 0.3022 | 0.9434 |
379
+ | 0.0183 | 324.0 | 3645 | 0.2958 | 0.9308 |
380
+ | 0.0257 | 324.98 | 3656 | 0.2943 | 0.9371 |
381
+ | 0.0257 | 325.96 | 3667 | 0.2945 | 0.9308 |
382
+ | 0.0257 | 326.93 | 3678 | 0.2910 | 0.9245 |
383
+ | 0.0257 | 328.0 | 3690 | 0.2856 | 0.9245 |
384
+ | 0.0164 | 328.98 | 3701 | 0.2580 | 0.9434 |
385
+ | 0.0164 | 329.96 | 3712 | 0.2566 | 0.9371 |
386
+ | 0.0164 | 330.93 | 3723 | 0.2538 | 0.9371 |
387
+ | 0.0164 | 332.0 | 3735 | 0.2448 | 0.9497 |
388
+ | 0.0164 | 332.98 | 3746 | 0.2544 | 0.9497 |
389
+ | 0.0222 | 333.96 | 3757 | 0.3075 | 0.9245 |
390
+ | 0.0222 | 334.93 | 3768 | 0.2757 | 0.9245 |
391
+ | 0.0222 | 336.0 | 3780 | 0.2715 | 0.9371 |
392
+ | 0.0222 | 336.98 | 3791 | 0.3330 | 0.9308 |
393
+ | 0.0212 | 337.96 | 3802 | 0.3560 | 0.9371 |
394
+ | 0.0212 | 338.93 | 3813 | 0.2832 | 0.9371 |
395
+ | 0.0212 | 340.0 | 3825 | 0.2855 | 0.9308 |
396
+ | 0.0212 | 340.98 | 3836 | 0.3063 | 0.9308 |
397
+ | 0.0212 | 341.96 | 3847 | 0.2915 | 0.9308 |
398
+ | 0.016 | 342.93 | 3858 | 0.2836 | 0.9434 |
399
+ | 0.016 | 344.0 | 3870 | 0.2805 | 0.9371 |
400
+ | 0.016 | 344.98 | 3881 | 0.2678 | 0.9497 |
401
+ | 0.016 | 345.96 | 3892 | 0.2840 | 0.9371 |
402
+ | 0.0163 | 346.93 | 3903 | 0.3048 | 0.9308 |
403
+ | 0.0163 | 348.0 | 3915 | 0.2761 | 0.9434 |
404
+ | 0.0163 | 348.98 | 3926 | 0.3045 | 0.9371 |
405
+ | 0.0163 | 349.96 | 3937 | 0.2673 | 0.9371 |
406
+ | 0.0163 | 350.93 | 3948 | 0.2830 | 0.9308 |
407
+ | 0.0185 | 352.0 | 3960 | 0.3150 | 0.9308 |
408
+ | 0.0185 | 352.98 | 3971 | 0.2967 | 0.9308 |
409
+ | 0.0185 | 353.96 | 3982 | 0.2918 | 0.9308 |
410
+ | 0.0185 | 354.93 | 3993 | 0.2849 | 0.9371 |
411
+ | 0.0189 | 356.0 | 4005 | 0.2804 | 0.9371 |
412
+ | 0.0189 | 356.98 | 4016 | 0.2909 | 0.9371 |
413
+ | 0.0189 | 357.96 | 4027 | 0.3030 | 0.9308 |
414
+ | 0.0189 | 358.93 | 4038 | 0.3163 | 0.9308 |
415
+ | 0.0153 | 360.0 | 4050 | 0.3217 | 0.9245 |
416
+ | 0.0153 | 360.98 | 4061 | 0.3025 | 0.9434 |
417
+ | 0.0153 | 361.96 | 4072 | 0.2974 | 0.9371 |
418
+ | 0.0153 | 362.93 | 4083 | 0.2866 | 0.9497 |
419
+ | 0.0153 | 364.0 | 4095 | 0.3246 | 0.9308 |
420
+ | 0.0169 | 364.98 | 4106 | 0.2801 | 0.9434 |
421
+ | 0.0169 | 365.96 | 4117 | 0.3133 | 0.9371 |
422
+ | 0.0169 | 366.93 | 4128 | 0.3284 | 0.9245 |
423
+ | 0.0169 | 368.0 | 4140 | 0.2717 | 0.9371 |
424
+ | 0.0207 | 368.98 | 4151 | 0.2692 | 0.9497 |
425
+ | 0.0207 | 369.96 | 4162 | 0.2674 | 0.9434 |
426
+ | 0.0207 | 370.93 | 4173 | 0.2643 | 0.9371 |
427
+ | 0.0207 | 372.0 | 4185 | 0.2970 | 0.9434 |
428
+ | 0.0207 | 372.98 | 4196 | 0.2688 | 0.9434 |
429
+ | 0.0213 | 373.96 | 4207 | 0.2765 | 0.9371 |
430
+ | 0.0213 | 374.93 | 4218 | 0.2870 | 0.9371 |
431
+ | 0.0213 | 376.0 | 4230 | 0.3006 | 0.9371 |
432
+ | 0.0213 | 376.98 | 4241 | 0.2944 | 0.9434 |
433
+ | 0.02 | 377.96 | 4252 | 0.3020 | 0.9371 |
434
+ | 0.02 | 378.93 | 4263 | 0.3074 | 0.9371 |
435
+ | 0.02 | 380.0 | 4275 | 0.2943 | 0.9434 |
436
+ | 0.02 | 380.98 | 4286 | 0.2825 | 0.9497 |
437
+ | 0.02 | 381.96 | 4297 | 0.2761 | 0.9434 |
438
+ | 0.0143 | 382.93 | 4308 | 0.2920 | 0.9434 |
439
+ | 0.0143 | 384.0 | 4320 | 0.2952 | 0.9434 |
440
+ | 0.0143 | 384.98 | 4331 | 0.3165 | 0.9497 |
441
+ | 0.0143 | 385.96 | 4342 | 0.2803 | 0.9371 |
442
+ | 0.0196 | 386.93 | 4353 | 0.2876 | 0.9371 |
443
+ | 0.0196 | 388.0 | 4365 | 0.2759 | 0.9434 |
444
+ | 0.0196 | 388.98 | 4376 | 0.2701 | 0.9434 |
445
+ | 0.0196 | 389.96 | 4387 | 0.2951 | 0.9434 |
446
+ | 0.0196 | 390.93 | 4398 | 0.2950 | 0.9371 |
447
+ | 0.0234 | 392.0 | 4410 | 0.2960 | 0.9371 |
448
+ | 0.0234 | 392.98 | 4421 | 0.3337 | 0.9308 |
449
+ | 0.0234 | 393.96 | 4432 | 0.3383 | 0.9308 |
450
+ | 0.0234 | 394.93 | 4443 | 0.3078 | 0.9371 |
451
+ | 0.0161 | 396.0 | 4455 | 0.3139 | 0.9371 |
452
+ | 0.0161 | 396.98 | 4466 | 0.3188 | 0.9308 |
453
+ | 0.0161 | 397.96 | 4477 | 0.3307 | 0.9308 |
454
+ | 0.0161 | 398.93 | 4488 | 0.3163 | 0.9308 |
455
+ | 0.0162 | 400.0 | 4500 | 0.3018 | 0.9434 |
456
+ | 0.0162 | 400.98 | 4511 | 0.2813 | 0.9371 |
457
+ | 0.0162 | 401.96 | 4522 | 0.3019 | 0.9371 |
458
+ | 0.0162 | 402.93 | 4533 | 0.2810 | 0.9434 |
459
+ | 0.0162 | 404.0 | 4545 | 0.2746 | 0.9371 |
460
+ | 0.023 | 404.98 | 4556 | 0.2851 | 0.9371 |
461
+ | 0.023 | 405.96 | 4567 | 0.3158 | 0.9245 |
462
+ | 0.023 | 406.93 | 4578 | 0.3467 | 0.9119 |
463
+ | 0.023 | 408.0 | 4590 | 0.3496 | 0.9182 |
464
+ | 0.0164 | 408.98 | 4601 | 0.3324 | 0.9245 |
465
+ | 0.0164 | 409.96 | 4612 | 0.3246 | 0.9371 |
466
+ | 0.0164 | 410.93 | 4623 | 0.3765 | 0.9308 |
467
+ | 0.0164 | 412.0 | 4635 | 0.3543 | 0.9245 |
468
+ | 0.0164 | 412.98 | 4646 | 0.3280 | 0.9245 |
469
+ | 0.0189 | 413.96 | 4657 | 0.3075 | 0.9371 |
470
+ | 0.0189 | 414.93 | 4668 | 0.3013 | 0.9371 |
471
+ | 0.0189 | 416.0 | 4680 | 0.3048 | 0.9308 |
472
+ | 0.0189 | 416.98 | 4691 | 0.2975 | 0.9434 |
473
+ | 0.018 | 417.96 | 4702 | 0.3011 | 0.9371 |
474
+ | 0.018 | 418.93 | 4713 | 0.3059 | 0.9434 |
475
+ | 0.018 | 420.0 | 4725 | 0.3003 | 0.9371 |
476
+ | 0.018 | 420.98 | 4736 | 0.2899 | 0.9308 |
477
+ | 0.018 | 421.96 | 4747 | 0.2739 | 0.9434 |
478
+ | 0.014 | 422.93 | 4758 | 0.2823 | 0.9308 |
479
+ | 0.014 | 424.0 | 4770 | 0.3002 | 0.9434 |
480
+ | 0.014 | 424.98 | 4781 | 0.3104 | 0.9308 |
481
+ | 0.014 | 425.96 | 4792 | 0.2993 | 0.9371 |
482
+ | 0.0161 | 426.93 | 4803 | 0.2838 | 0.9434 |
483
+ | 0.0161 | 428.0 | 4815 | 0.3035 | 0.9371 |
484
+ | 0.0161 | 428.98 | 4826 | 0.3172 | 0.9308 |
485
+ | 0.0161 | 429.96 | 4837 | 0.2885 | 0.9371 |
486
+ | 0.0161 | 430.93 | 4848 | 0.2915 | 0.9434 |
487
+ | 0.0181 | 432.0 | 4860 | 0.3238 | 0.9371 |
488
+ | 0.0181 | 432.98 | 4871 | 0.3051 | 0.9371 |
489
+ | 0.0181 | 433.96 | 4882 | 0.2747 | 0.9434 |
490
+ | 0.0181 | 434.93 | 4893 | 0.2778 | 0.9434 |
491
+ | 0.0152 | 436.0 | 4905 | 0.3143 | 0.9308 |
492
+ | 0.0152 | 436.98 | 4916 | 0.2953 | 0.9434 |
493
+ | 0.0152 | 437.96 | 4927 | 0.2987 | 0.9434 |
494
+ | 0.0152 | 438.93 | 4938 | 0.3240 | 0.9308 |
495
+ | 0.0233 | 440.0 | 4950 | 0.2932 | 0.9434 |
496
+ | 0.0233 | 440.98 | 4961 | 0.3067 | 0.9308 |
497
+ | 0.0233 | 441.96 | 4972 | 0.3170 | 0.9308 |
498
+ | 0.0233 | 442.93 | 4983 | 0.3348 | 0.9308 |
499
+ | 0.0233 | 444.0 | 4995 | 0.3351 | 0.9245 |
500
+ | 0.0134 | 444.98 | 5006 | 0.3378 | 0.9245 |
501
+ | 0.0134 | 445.96 | 5017 | 0.3204 | 0.9308 |
502
+ | 0.0134 | 446.93 | 5028 | 0.3096 | 0.9371 |
503
+ | 0.0134 | 448.0 | 5040 | 0.3135 | 0.9308 |
504
+ | 0.0185 | 448.98 | 5051 | 0.3205 | 0.9371 |
505
+ | 0.0185 | 449.96 | 5062 | 0.3152 | 0.9371 |
506
+ | 0.0185 | 450.93 | 5073 | 0.3272 | 0.9308 |
507
+ | 0.0185 | 452.0 | 5085 | 0.3164 | 0.9371 |
508
+ | 0.0185 | 452.98 | 5096 | 0.3297 | 0.9245 |
509
+ | 0.0149 | 453.96 | 5107 | 0.3299 | 0.9245 |
510
+ | 0.0149 | 454.93 | 5118 | 0.3427 | 0.9308 |
511
+ | 0.0149 | 456.0 | 5130 | 0.3776 | 0.9245 |
512
+ | 0.0149 | 456.98 | 5141 | 0.3764 | 0.9182 |
513
+ | 0.0099 | 457.96 | 5152 | 0.3852 | 0.9182 |
514
+ | 0.0099 | 458.93 | 5163 | 0.3555 | 0.9245 |
515
+ | 0.0099 | 460.0 | 5175 | 0.3497 | 0.9245 |
516
+ | 0.0099 | 460.98 | 5186 | 0.3959 | 0.9119 |
517
+ | 0.0099 | 461.96 | 5197 | 0.3429 | 0.9308 |
518
+ | 0.0123 | 462.93 | 5208 | 0.3278 | 0.9308 |
519
+ | 0.0123 | 464.0 | 5220 | 0.3075 | 0.9371 |
520
+ | 0.0123 | 464.98 | 5231 | 0.3019 | 0.9371 |
521
+ | 0.0123 | 465.96 | 5242 | 0.3069 | 0.9371 |
522
+ | 0.0169 | 466.93 | 5253 | 0.3036 | 0.9371 |
523
+ | 0.0169 | 468.0 | 5265 | 0.3256 | 0.9371 |
524
+ | 0.0169 | 468.98 | 5276 | 0.3241 | 0.9308 |
525
+ | 0.0169 | 469.96 | 5287 | 0.3236 | 0.9245 |
526
+ | 0.0169 | 470.93 | 5298 | 0.3221 | 0.9308 |
527
+ | 0.0114 | 472.0 | 5310 | 0.2958 | 0.9371 |
528
+ | 0.0114 | 472.98 | 5321 | 0.2994 | 0.9371 |
529
+ | 0.0114 | 473.96 | 5332 | 0.2994 | 0.9371 |
530
+ | 0.0114 | 474.93 | 5343 | 0.4240 | 0.9245 |
531
+ | 0.0148 | 476.0 | 5355 | 0.3286 | 0.9308 |
532
+ | 0.0148 | 476.98 | 5366 | 0.2954 | 0.9434 |
533
+ | 0.0148 | 477.96 | 5377 | 0.2959 | 0.9434 |
534
+ | 0.0148 | 478.93 | 5388 | 0.2928 | 0.9434 |
535
+ | 0.0171 | 480.0 | 5400 | 0.2977 | 0.9434 |
536
+ | 0.0171 | 480.98 | 5411 | 0.3075 | 0.9434 |
537
+ | 0.0171 | 481.96 | 5422 | 0.3573 | 0.9308 |
538
+ | 0.0171 | 482.93 | 5433 | 0.3879 | 0.9182 |
539
+ | 0.0171 | 484.0 | 5445 | 0.3887 | 0.9119 |
540
+ | 0.0166 | 484.98 | 5456 | 0.3699 | 0.9182 |
541
+ | 0.0166 | 485.96 | 5467 | 0.3514 | 0.9308 |
542
+ | 0.0166 | 486.93 | 5478 | 0.3440 | 0.9308 |
543
+ | 0.0166 | 488.0 | 5490 | 0.3121 | 0.9371 |
544
+ | 0.0169 | 488.98 | 5501 | 0.3186 | 0.9371 |
545
+ | 0.0169 | 489.96 | 5512 | 0.3384 | 0.9308 |
546
+ | 0.0169 | 490.93 | 5523 | 0.3587 | 0.9245 |
547
+ | 0.0169 | 492.0 | 5535 | 0.3266 | 0.9371 |
548
+ | 0.0169 | 492.98 | 5546 | 0.3274 | 0.9308 |
549
+ | 0.0162 | 493.96 | 5557 | 0.3434 | 0.9245 |
550
+ | 0.0162 | 494.93 | 5568 | 0.3296 | 0.9245 |
551
+ | 0.0162 | 496.0 | 5580 | 0.3179 | 0.9371 |
552
+ | 0.0162 | 496.98 | 5591 | 0.3223 | 0.9371 |
553
+ | 0.0128 | 497.96 | 5602 | 0.3526 | 0.9182 |
554
+ | 0.0128 | 498.93 | 5613 | 0.3345 | 0.9308 |
555
+ | 0.0128 | 500.0 | 5625 | 0.3081 | 0.9308 |
556
+ | 0.0128 | 500.98 | 5636 | 0.3136 | 0.9308 |
557
+ | 0.0128 | 501.96 | 5647 | 0.3160 | 0.9308 |
558
+ | 0.0089 | 502.93 | 5658 | 0.3218 | 0.9308 |
559
+ | 0.0089 | 504.0 | 5670 | 0.3330 | 0.9308 |
560
+ | 0.0089 | 504.98 | 5681 | 0.3611 | 0.9245 |
561
+ | 0.0089 | 505.96 | 5692 | 0.3820 | 0.9245 |
562
+ | 0.0168 | 506.93 | 5703 | 0.3472 | 0.9245 |
563
+ | 0.0168 | 508.0 | 5715 | 0.3075 | 0.9308 |
564
+ | 0.0168 | 508.98 | 5726 | 0.3047 | 0.9308 |
565
+ | 0.0168 | 509.96 | 5737 | 0.3144 | 0.9371 |
566
+ | 0.0168 | 510.93 | 5748 | 0.3144 | 0.9371 |
567
+ | 0.0143 | 512.0 | 5760 | 0.3098 | 0.9308 |
568
+ | 0.0143 | 512.98 | 5771 | 0.3132 | 0.9371 |
569
+ | 0.0143 | 513.96 | 5782 | 0.3325 | 0.9371 |
570
+ | 0.0143 | 514.93 | 5793 | 0.3209 | 0.9371 |
571
+ | 0.014 | 516.0 | 5805 | 0.3192 | 0.9371 |
572
+ | 0.014 | 516.98 | 5816 | 0.3118 | 0.9245 |
573
+ | 0.014 | 517.96 | 5827 | 0.3142 | 0.9308 |
574
+ | 0.014 | 518.93 | 5838 | 0.3255 | 0.9371 |
575
+ | 0.0111 | 520.0 | 5850 | 0.3221 | 0.9371 |
576
+ | 0.0111 | 520.98 | 5861 | 0.3212 | 0.9308 |
577
+ | 0.0111 | 521.96 | 5872 | 0.3291 | 0.9245 |
578
+ | 0.0111 | 522.93 | 5883 | 0.3314 | 0.9245 |
579
+ | 0.0111 | 524.0 | 5895 | 0.3268 | 0.9308 |
580
+ | 0.0107 | 524.98 | 5906 | 0.3352 | 0.9371 |
581
+ | 0.0107 | 525.96 | 5917 | 0.3424 | 0.9371 |
582
+ | 0.0107 | 526.93 | 5928 | 0.3389 | 0.9308 |
583
+ | 0.0107 | 528.0 | 5940 | 0.3547 | 0.9371 |
584
+ | 0.01 | 528.98 | 5951 | 0.3475 | 0.9182 |
585
+ | 0.01 | 529.96 | 5962 | 0.3595 | 0.9371 |
586
+ | 0.01 | 530.93 | 5973 | 0.3673 | 0.9308 |
587
+ | 0.01 | 532.0 | 5985 | 0.4165 | 0.9119 |
588
+ | 0.01 | 532.98 | 5996 | 0.4247 | 0.9182 |
589
+ | 0.0126 | 533.96 | 6007 | 0.4062 | 0.9245 |
590
+ | 0.0126 | 534.93 | 6018 | 0.3752 | 0.9245 |
591
+ | 0.0126 | 536.0 | 6030 | 0.3574 | 0.9245 |
592
+ | 0.0126 | 536.98 | 6041 | 0.3824 | 0.9308 |
593
+ | 0.0126 | 537.96 | 6052 | 0.3730 | 0.9371 |
594
+ | 0.0126 | 538.93 | 6063 | 0.3704 | 0.9371 |
595
+ | 0.0126 | 540.0 | 6075 | 0.3814 | 0.9308 |
596
+ | 0.0126 | 540.98 | 6086 | 0.3649 | 0.9371 |
597
+ | 0.0126 | 541.96 | 6097 | 0.3811 | 0.9245 |
598
+ | 0.012 | 542.93 | 6108 | 0.3544 | 0.9245 |
599
+ | 0.012 | 544.0 | 6120 | 0.3615 | 0.9371 |
600
+ | 0.012 | 544.98 | 6131 | 0.3558 | 0.9371 |
601
+ | 0.012 | 545.96 | 6142 | 0.3482 | 0.9182 |
602
+ | 0.0135 | 546.93 | 6153 | 0.3668 | 0.9308 |
603
+ | 0.0135 | 548.0 | 6165 | 0.3404 | 0.9371 |
604
+ | 0.0135 | 548.98 | 6176 | 0.3340 | 0.9434 |
605
+ | 0.0135 | 549.96 | 6187 | 0.3377 | 0.9308 |
606
+ | 0.0135 | 550.93 | 6198 | 0.3407 | 0.9308 |
607
+ | 0.0101 | 552.0 | 6210 | 0.3389 | 0.9308 |
608
+ | 0.0101 | 552.98 | 6221 | 0.3305 | 0.9434 |
609
+ | 0.0101 | 553.96 | 6232 | 0.3199 | 0.9434 |
610
+ | 0.0101 | 554.93 | 6243 | 0.3338 | 0.9434 |
611
+ | 0.0175 | 556.0 | 6255 | 0.3323 | 0.9434 |
612
+ | 0.0175 | 556.98 | 6266 | 0.3403 | 0.9371 |
613
+ | 0.0175 | 557.96 | 6277 | 0.3474 | 0.9308 |
614
+ | 0.0175 | 558.93 | 6288 | 0.3499 | 0.9308 |
615
+ | 0.0108 | 560.0 | 6300 | 0.3429 | 0.9245 |
616
+ | 0.0108 | 560.98 | 6311 | 0.3396 | 0.9308 |
617
+ | 0.0108 | 561.96 | 6322 | 0.3467 | 0.9308 |
618
+ | 0.0108 | 562.93 | 6333 | 0.3349 | 0.9434 |
619
+ | 0.0108 | 564.0 | 6345 | 0.3381 | 0.9371 |
620
+ | 0.0139 | 564.98 | 6356 | 0.3274 | 0.9434 |
621
+ | 0.0139 | 565.96 | 6367 | 0.3319 | 0.9371 |
622
+ | 0.0139 | 566.93 | 6378 | 0.3321 | 0.9245 |
623
+ | 0.0139 | 568.0 | 6390 | 0.3547 | 0.9308 |
624
+ | 0.0138 | 568.98 | 6401 | 0.3662 | 0.9245 |
625
+ | 0.0138 | 569.96 | 6412 | 0.3455 | 0.9245 |
626
+ | 0.0138 | 570.93 | 6423 | 0.3478 | 0.9371 |
627
+ | 0.0138 | 572.0 | 6435 | 0.3400 | 0.9308 |
628
+ | 0.0138 | 572.98 | 6446 | 0.3513 | 0.9434 |
629
+ | 0.0095 | 573.96 | 6457 | 0.3462 | 0.9434 |
630
+ | 0.0095 | 574.93 | 6468 | 0.3349 | 0.9308 |
631
+ | 0.0095 | 576.0 | 6480 | 0.3376 | 0.9245 |
632
+ | 0.0095 | 576.98 | 6491 | 0.3373 | 0.9245 |
633
+ | 0.0138 | 577.96 | 6502 | 0.3311 | 0.9308 |
634
+ | 0.0138 | 578.93 | 6513 | 0.3312 | 0.9308 |
635
+ | 0.0138 | 580.0 | 6525 | 0.3291 | 0.9434 |
636
+ | 0.0138 | 580.98 | 6536 | 0.3442 | 0.9308 |
637
+ | 0.0138 | 581.96 | 6547 | 0.3806 | 0.9308 |
638
+ | 0.0163 | 582.93 | 6558 | 0.3934 | 0.9308 |
639
+ | 0.0163 | 584.0 | 6570 | 0.3990 | 0.9245 |
640
+ | 0.0163 | 584.98 | 6581 | 0.3533 | 0.9245 |
641
+ | 0.0163 | 585.96 | 6592 | 0.3410 | 0.9245 |
642
+ | 0.0152 | 586.93 | 6603 | 0.3351 | 0.9371 |
643
+ | 0.0152 | 588.0 | 6615 | 0.3369 | 0.9434 |
644
+ | 0.0152 | 588.98 | 6626 | 0.3542 | 0.9371 |
645
+ | 0.0152 | 589.96 | 6637 | 0.3729 | 0.9308 |
646
+ | 0.0152 | 590.93 | 6648 | 0.3407 | 0.9434 |
647
+ | 0.017 | 592.0 | 6660 | 0.3440 | 0.9308 |
648
+ | 0.017 | 592.98 | 6671 | 0.3493 | 0.9371 |
649
+ | 0.017 | 593.96 | 6682 | 0.3712 | 0.9371 |
650
+ | 0.017 | 594.93 | 6693 | 0.3646 | 0.9371 |
651
+ | 0.0113 | 596.0 | 6705 | 0.3663 | 0.9182 |
652
+ | 0.0113 | 596.98 | 6716 | 0.3726 | 0.9245 |
653
+ | 0.0113 | 597.96 | 6727 | 0.3530 | 0.9182 |
654
+ | 0.0113 | 598.93 | 6738 | 0.3452 | 0.9308 |
655
+ | 0.0115 | 600.0 | 6750 | 0.3340 | 0.9371 |
656
+ | 0.0115 | 600.98 | 6761 | 0.3489 | 0.9434 |
657
+ | 0.0115 | 601.96 | 6772 | 0.3408 | 0.9434 |
658
+ | 0.0115 | 602.93 | 6783 | 0.3424 | 0.9434 |
659
+ | 0.0115 | 604.0 | 6795 | 0.3480 | 0.9308 |
660
+ | 0.0132 | 604.98 | 6806 | 0.3439 | 0.9308 |
661
+ | 0.0132 | 605.96 | 6817 | 0.3531 | 0.9434 |
662
+ | 0.0132 | 606.93 | 6828 | 0.3808 | 0.9308 |
663
+ | 0.0132 | 608.0 | 6840 | 0.3441 | 0.9434 |
664
+ | 0.014 | 608.98 | 6851 | 0.3534 | 0.9434 |
665
+ | 0.014 | 609.96 | 6862 | 0.3583 | 0.9371 |
666
+ | 0.014 | 610.93 | 6873 | 0.3640 | 0.9371 |
667
+ | 0.014 | 612.0 | 6885 | 0.3588 | 0.9371 |
668
+ | 0.014 | 612.98 | 6896 | 0.3663 | 0.9371 |
669
+ | 0.0089 | 613.96 | 6907 | 0.3789 | 0.9371 |
670
+ | 0.0089 | 614.93 | 6918 | 0.3788 | 0.9371 |
671
+ | 0.0089 | 616.0 | 6930 | 0.3528 | 0.9308 |
672
+ | 0.0089 | 616.98 | 6941 | 0.3626 | 0.9182 |
673
+ | 0.0135 | 617.96 | 6952 | 0.3761 | 0.9182 |
674
+ | 0.0135 | 618.93 | 6963 | 0.3911 | 0.9308 |
675
+ | 0.0135 | 620.0 | 6975 | 0.3901 | 0.9371 |
676
+ | 0.0135 | 620.98 | 6986 | 0.4003 | 0.9308 |
677
+ | 0.0135 | 621.96 | 6997 | 0.3653 | 0.9371 |
678
+ | 0.0071 | 622.93 | 7008 | 0.3350 | 0.9371 |
679
+ | 0.0071 | 624.0 | 7020 | 0.3354 | 0.9371 |
680
+ | 0.0071 | 624.98 | 7031 | 0.3716 | 0.9434 |
681
+ | 0.0071 | 625.96 | 7042 | 0.3520 | 0.9371 |
682
+ | 0.0129 | 626.93 | 7053 | 0.3307 | 0.9371 |
683
+ | 0.0129 | 628.0 | 7065 | 0.3305 | 0.9434 |
684
+ | 0.0129 | 628.98 | 7076 | 0.3302 | 0.9434 |
685
+ | 0.0129 | 629.96 | 7087 | 0.3291 | 0.9434 |
686
+ | 0.0129 | 630.93 | 7098 | 0.3330 | 0.9434 |
687
+ | 0.0091 | 632.0 | 7110 | 0.3332 | 0.9371 |
688
+ | 0.0091 | 632.98 | 7121 | 0.3322 | 0.9434 |
689
+ | 0.0091 | 633.96 | 7132 | 0.3438 | 0.9371 |
690
+ | 0.0091 | 634.93 | 7143 | 0.3611 | 0.9434 |
691
+ | 0.0107 | 636.0 | 7155 | 0.3489 | 0.9371 |
692
+ | 0.0107 | 636.98 | 7166 | 0.3358 | 0.9371 |
693
+ | 0.0107 | 637.96 | 7177 | 0.3373 | 0.9371 |
694
+ | 0.0107 | 638.93 | 7188 | 0.3444 | 0.9371 |
695
+ | 0.0125 | 640.0 | 7200 | 0.3633 | 0.9371 |
696
+ | 0.0125 | 640.98 | 7211 | 0.3563 | 0.9308 |
697
+ | 0.0125 | 641.96 | 7222 | 0.3573 | 0.9308 |
698
+ | 0.0125 | 642.93 | 7233 | 0.3535 | 0.9308 |
699
+ | 0.0125 | 644.0 | 7245 | 0.3469 | 0.9308 |
700
+ | 0.0071 | 644.98 | 7256 | 0.3448 | 0.9371 |
701
+ | 0.0071 | 645.96 | 7267 | 0.3445 | 0.9371 |
702
+ | 0.0071 | 646.93 | 7278 | 0.3418 | 0.9371 |
703
+ | 0.0071 | 648.0 | 7290 | 0.3541 | 0.9371 |
704
+ | 0.0076 | 648.98 | 7301 | 0.3406 | 0.9308 |
705
+ | 0.0076 | 649.96 | 7312 | 0.3327 | 0.9434 |
706
+ | 0.0076 | 650.93 | 7323 | 0.3382 | 0.9434 |
707
+ | 0.0076 | 652.0 | 7335 | 0.3574 | 0.9371 |
708
+ | 0.0076 | 652.98 | 7346 | 0.3462 | 0.9371 |
709
+ | 0.0131 | 653.96 | 7357 | 0.3388 | 0.9434 |
710
+ | 0.0131 | 654.93 | 7368 | 0.3379 | 0.9371 |
711
+ | 0.0131 | 656.0 | 7380 | 0.3396 | 0.9434 |
712
+ | 0.0131 | 656.98 | 7391 | 0.3437 | 0.9371 |
713
+ | 0.0086 | 657.96 | 7402 | 0.3466 | 0.9308 |
714
+ | 0.0086 | 658.93 | 7413 | 0.3453 | 0.9371 |
715
+ | 0.0086 | 660.0 | 7425 | 0.3420 | 0.9371 |
716
+ | 0.0086 | 660.98 | 7436 | 0.3371 | 0.9434 |
717
+ | 0.0086 | 661.96 | 7447 | 0.3443 | 0.9371 |
718
+ | 0.0123 | 662.93 | 7458 | 0.3473 | 0.9371 |
719
+ | 0.0123 | 664.0 | 7470 | 0.3425 | 0.9371 |
720
+ | 0.0123 | 664.98 | 7481 | 0.3454 | 0.9308 |
721
+ | 0.0123 | 665.96 | 7492 | 0.3494 | 0.9371 |
722
+ | 0.0083 | 666.93 | 7503 | 0.3536 | 0.9371 |
723
+ | 0.0083 | 668.0 | 7515 | 0.3476 | 0.9434 |
724
+ | 0.0083 | 668.98 | 7526 | 0.3487 | 0.9371 |
725
+ | 0.0083 | 669.96 | 7537 | 0.3533 | 0.9371 |
726
+ | 0.0083 | 670.93 | 7548 | 0.3554 | 0.9371 |
727
+ | 0.0079 | 672.0 | 7560 | 0.3482 | 0.9434 |
728
+ | 0.0079 | 672.98 | 7571 | 0.3481 | 0.9434 |
729
+ | 0.0079 | 673.96 | 7582 | 0.3446 | 0.9434 |
730
+ | 0.0079 | 674.93 | 7593 | 0.3432 | 0.9371 |
731
+ | 0.0111 | 676.0 | 7605 | 0.3470 | 0.9308 |
732
+ | 0.0111 | 676.98 | 7616 | 0.3393 | 0.9371 |
733
+ | 0.0111 | 677.96 | 7627 | 0.3386 | 0.9434 |
734
+ | 0.0111 | 678.93 | 7638 | 0.3310 | 0.9434 |
735
+ | 0.0107 | 680.0 | 7650 | 0.3299 | 0.9434 |
736
+ | 0.0107 | 680.98 | 7661 | 0.3316 | 0.9434 |
737
+ | 0.0107 | 681.96 | 7672 | 0.3332 | 0.9434 |
738
+ | 0.0107 | 682.93 | 7683 | 0.3444 | 0.9434 |
739
+ | 0.0107 | 684.0 | 7695 | 0.3445 | 0.9434 |
740
+ | 0.0091 | 684.98 | 7706 | 0.3444 | 0.9434 |
741
+ | 0.0091 | 685.96 | 7717 | 0.3409 | 0.9434 |
742
+ | 0.0091 | 686.93 | 7728 | 0.3441 | 0.9371 |
743
+ | 0.0091 | 688.0 | 7740 | 0.3517 | 0.9308 |
744
+ | 0.0081 | 688.98 | 7751 | 0.3521 | 0.9434 |
745
+ | 0.0081 | 689.96 | 7762 | 0.3507 | 0.9434 |
746
+ | 0.0081 | 690.93 | 7773 | 0.3461 | 0.9371 |
747
+ | 0.0081 | 692.0 | 7785 | 0.3498 | 0.9371 |
748
+ | 0.0081 | 692.98 | 7796 | 0.3544 | 0.9308 |
749
+ | 0.009 | 693.96 | 7807 | 0.3557 | 0.9308 |
750
+ | 0.009 | 694.93 | 7818 | 0.3533 | 0.9308 |
751
+ | 0.009 | 696.0 | 7830 | 0.3559 | 0.9371 |
752
+ | 0.009 | 696.98 | 7841 | 0.3595 | 0.9371 |
753
+ | 0.0078 | 697.96 | 7852 | 0.3617 | 0.9371 |
754
+ | 0.0078 | 698.93 | 7863 | 0.3614 | 0.9371 |
755
+ | 0.0078 | 700.0 | 7875 | 0.3452 | 0.9434 |
756
+ | 0.0078 | 700.98 | 7886 | 0.3431 | 0.9434 |
757
+ | 0.0078 | 701.96 | 7897 | 0.3469 | 0.9371 |
758
+ | 0.0102 | 702.93 | 7908 | 0.3564 | 0.9371 |
759
+ | 0.0102 | 704.0 | 7920 | 0.3594 | 0.9371 |
760
+ | 0.0102 | 704.98 | 7931 | 0.3518 | 0.9371 |
761
+ | 0.0102 | 705.96 | 7942 | 0.3444 | 0.9434 |
762
+ | 0.008 | 706.93 | 7953 | 0.3426 | 0.9434 |
763
+ | 0.008 | 708.0 | 7965 | 0.3459 | 0.9434 |
764
+ | 0.008 | 708.98 | 7976 | 0.3511 | 0.9371 |
765
+ | 0.008 | 709.96 | 7987 | 0.3544 | 0.9434 |
766
+ | 0.008 | 710.93 | 7998 | 0.3567 | 0.9371 |
767
+ | 0.0053 | 712.0 | 8010 | 0.3674 | 0.9371 |
768
+ | 0.0053 | 712.98 | 8021 | 0.3630 | 0.9371 |
769
+ | 0.0053 | 713.96 | 8032 | 0.3602 | 0.9371 |
770
+ | 0.0053 | 714.93 | 8043 | 0.3566 | 0.9371 |
771
+ | 0.0071 | 716.0 | 8055 | 0.3646 | 0.9371 |
772
+ | 0.0071 | 716.98 | 8066 | 0.3646 | 0.9371 |
773
+ | 0.0071 | 717.96 | 8077 | 0.3593 | 0.9371 |
774
+ | 0.0071 | 718.93 | 8088 | 0.3625 | 0.9371 |
775
+ | 0.0071 | 720.0 | 8100 | 0.3610 | 0.9371 |
776
+ | 0.0071 | 720.98 | 8111 | 0.3589 | 0.9371 |
777
+ | 0.0071 | 721.96 | 8122 | 0.3529 | 0.9371 |
778
+ | 0.0071 | 722.93 | 8133 | 0.3484 | 0.9371 |
779
+ | 0.0071 | 724.0 | 8145 | 0.3469 | 0.9434 |
780
+ | 0.0098 | 724.98 | 8156 | 0.3481 | 0.9434 |
781
+ | 0.0098 | 725.96 | 8167 | 0.3464 | 0.9434 |
782
+ | 0.0098 | 726.93 | 8178 | 0.3482 | 0.9434 |
783
+ | 0.0098 | 728.0 | 8190 | 0.3467 | 0.9434 |
784
+ | 0.0159 | 728.98 | 8201 | 0.3461 | 0.9371 |
785
+ | 0.0159 | 729.96 | 8212 | 0.3438 | 0.9434 |
786
+ | 0.0159 | 730.93 | 8223 | 0.3394 | 0.9434 |
787
+ | 0.0159 | 732.0 | 8235 | 0.3356 | 0.9434 |
788
+ | 0.0159 | 732.98 | 8246 | 0.3356 | 0.9434 |
789
+ | 0.0128 | 733.96 | 8257 | 0.3372 | 0.9434 |
790
+ | 0.0128 | 734.93 | 8268 | 0.3392 | 0.9434 |
791
+ | 0.0128 | 736.0 | 8280 | 0.3455 | 0.9371 |
792
+ | 0.0128 | 736.98 | 8291 | 0.3487 | 0.9371 |
793
+ | 0.0086 | 737.96 | 8302 | 0.3468 | 0.9371 |
794
+ | 0.0086 | 738.93 | 8313 | 0.3445 | 0.9371 |
795
+ | 0.0086 | 740.0 | 8325 | 0.3425 | 0.9434 |
796
+ | 0.0086 | 740.98 | 8336 | 0.3453 | 0.9371 |
797
+ | 0.0086 | 741.96 | 8347 | 0.3448 | 0.9371 |
798
+ | 0.011 | 742.93 | 8358 | 0.3412 | 0.9371 |
799
+ | 0.011 | 744.0 | 8370 | 0.3392 | 0.9371 |
800
+ | 0.011 | 744.98 | 8381 | 0.3390 | 0.9371 |
801
+ | 0.011 | 745.96 | 8392 | 0.3395 | 0.9371 |
802
+ | 0.0074 | 746.93 | 8403 | 0.3383 | 0.9371 |
803
+ | 0.0074 | 748.0 | 8415 | 0.3378 | 0.9434 |
804
+ | 0.0074 | 748.98 | 8426 | 0.3348 | 0.9371 |
805
+ | 0.0074 | 749.96 | 8437 | 0.3335 | 0.9434 |
806
+ | 0.0074 | 750.93 | 8448 | 0.3342 | 0.9434 |
807
+ | 0.0087 | 752.0 | 8460 | 0.3347 | 0.9434 |
808
+ | 0.0087 | 752.98 | 8471 | 0.3363 | 0.9434 |
809
+ | 0.0087 | 753.96 | 8482 | 0.3378 | 0.9434 |
810
+ | 0.0087 | 754.93 | 8493 | 0.3384 | 0.9434 |
811
+ | 0.0061 | 756.0 | 8505 | 0.3406 | 0.9308 |
812
+ | 0.0061 | 756.98 | 8516 | 0.3440 | 0.9371 |
813
+ | 0.0061 | 757.96 | 8527 | 0.3441 | 0.9308 |
814
+ | 0.0061 | 758.93 | 8538 | 0.3424 | 0.9308 |
815
+ | 0.0119 | 760.0 | 8550 | 0.3426 | 0.9371 |
816
+ | 0.0119 | 760.98 | 8561 | 0.3428 | 0.9371 |
817
+ | 0.0119 | 761.96 | 8572 | 0.3440 | 0.9308 |
818
+ | 0.0119 | 762.93 | 8583 | 0.3443 | 0.9308 |
819
+ | 0.0119 | 764.0 | 8595 | 0.3455 | 0.9308 |
820
+ | 0.0056 | 764.98 | 8606 | 0.3460 | 0.9308 |
821
+ | 0.0056 | 765.96 | 8617 | 0.3463 | 0.9308 |
822
+ | 0.0056 | 766.93 | 8628 | 0.3466 | 0.9308 |
823
+ | 0.0056 | 768.0 | 8640 | 0.3466 | 0.9308 |
824
+ | 0.0094 | 768.98 | 8651 | 0.3474 | 0.9308 |
825
+ | 0.0094 | 769.96 | 8662 | 0.3476 | 0.9308 |
826
+ | 0.0094 | 770.93 | 8673 | 0.3482 | 0.9308 |
827
+ | 0.0094 | 772.0 | 8685 | 0.3486 | 0.9308 |
828
+ | 0.0094 | 772.98 | 8696 | 0.3485 | 0.9308 |
829
+ | 0.014 | 773.96 | 8707 | 0.3478 | 0.9308 |
830
+ | 0.014 | 774.93 | 8718 | 0.3472 | 0.9308 |
831
+ | 0.014 | 776.0 | 8730 | 0.3465 | 0.9308 |
832
+ | 0.014 | 776.98 | 8741 | 0.3461 | 0.9308 |
833
+ | 0.0126 | 777.96 | 8752 | 0.3467 | 0.9308 |
834
+ | 0.0126 | 778.93 | 8763 | 0.3471 | 0.9308 |
835
+ | 0.0126 | 780.0 | 8775 | 0.3471 | 0.9308 |
836
+ | 0.0126 | 780.98 | 8786 | 0.3472 | 0.9308 |
837
+ | 0.0126 | 781.96 | 8797 | 0.3471 | 0.9308 |
838
+ | 0.0048 | 782.22 | 8800 | 0.3472 | 0.9308 |
839
+
840
+
841
+ ### Framework versions
842
+
843
+ - Transformers 4.39.0.dev0
844
+ - Pytorch 2.2.1+cu121
845
+ - Datasets 2.17.1
846
+ - Tokenizers 0.15.2
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 782.22,
3
+ "eval_accuracy": 0.9622641509433962,
4
+ "eval_loss": 0.19936275482177734,
5
+ "eval_runtime": 2.0221,
6
+ "eval_samples_per_second": 78.632,
7
+ "eval_steps_per_second": 4.945,
8
+ "train_loss": 0.0709631282125007,
9
+ "train_runtime": 5794.2307,
10
+ "train_samples_per_second": 98.995,
11
+ "train_steps_per_second": 1.519
12
+ }
checkpoint-2520/config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "anderloh/Huggingface-wav2vec-2Class-easy-train-test",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForSequenceClassification"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 128,
15
+ "codevector_dim": 128,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 256,
20
+ 256,
21
+ 256,
22
+ 256,
23
+ 256,
24
+ 256,
25
+ 256
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "sum",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.0,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "finetuning_task": "audio-classification",
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.0,
59
+ "hidden_dropout_prob": 0.0,
60
+ "hidden_size": 384,
61
+ "id2label": {
62
+ "0": "Classic",
63
+ "1": "Racecar"
64
+ },
65
+ "initializer_range": 0.02,
66
+ "intermediate_size": 1536,
67
+ "label2id": {
68
+ "Classic": "0",
69
+ "Racecar": "1"
70
+ },
71
+ "layer_norm_eps": 1e-05,
72
+ "layerdrop": 0.0,
73
+ "mask_feature_length": 10,
74
+ "mask_feature_min_masks": 0,
75
+ "mask_feature_prob": 0.0,
76
+ "mask_time_length": 10,
77
+ "mask_time_min_masks": 2,
78
+ "mask_time_prob": 0.65,
79
+ "model_type": "wav2vec2",
80
+ "num_adapter_layers": 3,
81
+ "num_attention_heads": 6,
82
+ "num_codevector_groups": 2,
83
+ "num_codevectors_per_group": 320,
84
+ "num_conv_pos_embedding_groups": 16,
85
+ "num_conv_pos_embeddings": 128,
86
+ "num_feat_extract_layers": 7,
87
+ "num_hidden_layers": 6,
88
+ "num_negatives": 100,
89
+ "output_hidden_size": 384,
90
+ "pad_token_id": 0,
91
+ "proj_codevector_dim": 128,
92
+ "tdnn_dilation": [
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 1,
97
+ 1
98
+ ],
99
+ "tdnn_dim": [
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 512,
104
+ 1500
105
+ ],
106
+ "tdnn_kernel": [
107
+ 5,
108
+ 3,
109
+ 3,
110
+ 1,
111
+ 1
112
+ ],
113
+ "torch_dtype": "float32",
114
+ "transformers_version": "4.39.0.dev0",
115
+ "use_weighted_layer_sum": false,
116
+ "vocab_size": 32,
117
+ "xvector_output_dim": 512
118
+ }
checkpoint-2520/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3099375b7d1fde7be7f4a0a0f66f570bca8fc5e9b16260b822168d829977b229
3
+ size 52149800
checkpoint-2520/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a09185a17f010331fa30a6f90e9ed772b8d6a73736f0f590c26c3a173232702
3
+ size 95906874
checkpoint-2520/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
checkpoint-2520/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a4125caf5b1a8be5ff33ddd6a29524a342227e6e2398c1e8b21e4af1dda1a13
3
+ size 14308
checkpoint-2520/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29adadd70635cff962e0ad7cf050c94a0b18c00310299b57d55e35d79d497fad
3
+ size 1064
checkpoint-2520/trainer_state.json ADDED
@@ -0,0 +1,2387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9622641509433962,
3
+ "best_model_checkpoint": "wav2vec2-2Class-easy-train-test-large/checkpoint-2520",
4
+ "epoch": 224.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2520,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.98,
13
+ "eval_accuracy": 0.4088050314465409,
14
+ "eval_loss": 0.7003181576728821,
15
+ "eval_runtime": 1.8048,
16
+ "eval_samples_per_second": 88.1,
17
+ "eval_steps_per_second": 5.541,
18
+ "step": 11
19
+ },
20
+ {
21
+ "epoch": 1.96,
22
+ "eval_accuracy": 0.4088050314465409,
23
+ "eval_loss": 0.7001124620437622,
24
+ "eval_runtime": 1.7728,
25
+ "eval_samples_per_second": 89.69,
26
+ "eval_steps_per_second": 5.641,
27
+ "step": 22
28
+ },
29
+ {
30
+ "epoch": 2.93,
31
+ "eval_accuracy": 0.41509433962264153,
32
+ "eval_loss": 0.69970703125,
33
+ "eval_runtime": 1.7593,
34
+ "eval_samples_per_second": 90.375,
35
+ "eval_steps_per_second": 5.684,
36
+ "step": 33
37
+ },
38
+ {
39
+ "epoch": 4.0,
40
+ "eval_accuracy": 0.42138364779874216,
41
+ "eval_loss": 0.6991450786590576,
42
+ "eval_runtime": 1.7582,
43
+ "eval_samples_per_second": 90.433,
44
+ "eval_steps_per_second": 5.688,
45
+ "step": 45
46
+ },
47
+ {
48
+ "epoch": 4.44,
49
+ "grad_norm": 0.8353477716445923,
50
+ "learning_rate": 1.7045454545454546e-06,
51
+ "loss": 0.6976,
52
+ "step": 50
53
+ },
54
+ {
55
+ "epoch": 4.98,
56
+ "eval_accuracy": 0.4276729559748428,
57
+ "eval_loss": 0.6984724998474121,
58
+ "eval_runtime": 1.7849,
59
+ "eval_samples_per_second": 89.08,
60
+ "eval_steps_per_second": 5.603,
61
+ "step": 56
62
+ },
63
+ {
64
+ "epoch": 5.96,
65
+ "eval_accuracy": 0.44025157232704404,
66
+ "eval_loss": 0.697744607925415,
67
+ "eval_runtime": 2.127,
68
+ "eval_samples_per_second": 74.753,
69
+ "eval_steps_per_second": 4.701,
70
+ "step": 67
71
+ },
72
+ {
73
+ "epoch": 6.93,
74
+ "eval_accuracy": 0.44654088050314467,
75
+ "eval_loss": 0.6968724727630615,
76
+ "eval_runtime": 2.2513,
77
+ "eval_samples_per_second": 70.624,
78
+ "eval_steps_per_second": 4.442,
79
+ "step": 78
80
+ },
81
+ {
82
+ "epoch": 8.0,
83
+ "eval_accuracy": 0.46540880503144655,
84
+ "eval_loss": 0.6957085728645325,
85
+ "eval_runtime": 2.1194,
86
+ "eval_samples_per_second": 75.021,
87
+ "eval_steps_per_second": 4.718,
88
+ "step": 90
89
+ },
90
+ {
91
+ "epoch": 8.89,
92
+ "grad_norm": 0.45805710554122925,
93
+ "learning_rate": 3.409090909090909e-06,
94
+ "loss": 0.6952,
95
+ "step": 100
96
+ },
97
+ {
98
+ "epoch": 8.98,
99
+ "eval_accuracy": 0.46540880503144655,
100
+ "eval_loss": 0.6945385932922363,
101
+ "eval_runtime": 2.2918,
102
+ "eval_samples_per_second": 69.378,
103
+ "eval_steps_per_second": 4.363,
104
+ "step": 101
105
+ },
106
+ {
107
+ "epoch": 9.96,
108
+ "eval_accuracy": 0.4779874213836478,
109
+ "eval_loss": 0.6933900117874146,
110
+ "eval_runtime": 2.2504,
111
+ "eval_samples_per_second": 70.654,
112
+ "eval_steps_per_second": 4.444,
113
+ "step": 112
114
+ },
115
+ {
116
+ "epoch": 10.93,
117
+ "eval_accuracy": 0.49056603773584906,
118
+ "eval_loss": 0.692146360874176,
119
+ "eval_runtime": 2.1543,
120
+ "eval_samples_per_second": 73.804,
121
+ "eval_steps_per_second": 4.642,
122
+ "step": 123
123
+ },
124
+ {
125
+ "epoch": 12.0,
126
+ "eval_accuracy": 0.5471698113207547,
127
+ "eval_loss": 0.6906170845031738,
128
+ "eval_runtime": 2.0832,
129
+ "eval_samples_per_second": 76.326,
130
+ "eval_steps_per_second": 4.8,
131
+ "step": 135
132
+ },
133
+ {
134
+ "epoch": 12.98,
135
+ "eval_accuracy": 0.610062893081761,
136
+ "eval_loss": 0.6892228722572327,
137
+ "eval_runtime": 2.0269,
138
+ "eval_samples_per_second": 78.443,
139
+ "eval_steps_per_second": 4.934,
140
+ "step": 146
141
+ },
142
+ {
143
+ "epoch": 13.33,
144
+ "grad_norm": 0.6493268609046936,
145
+ "learning_rate": 5.1136363636363635e-06,
146
+ "loss": 0.6911,
147
+ "step": 150
148
+ },
149
+ {
150
+ "epoch": 13.96,
151
+ "eval_accuracy": 0.6037735849056604,
152
+ "eval_loss": 0.6878040432929993,
153
+ "eval_runtime": 2.1502,
154
+ "eval_samples_per_second": 73.946,
155
+ "eval_steps_per_second": 4.651,
156
+ "step": 157
157
+ },
158
+ {
159
+ "epoch": 14.93,
160
+ "eval_accuracy": 0.5911949685534591,
161
+ "eval_loss": 0.6863483190536499,
162
+ "eval_runtime": 2.0844,
163
+ "eval_samples_per_second": 76.279,
164
+ "eval_steps_per_second": 4.797,
165
+ "step": 168
166
+ },
167
+ {
168
+ "epoch": 16.0,
169
+ "eval_accuracy": 0.5911949685534591,
170
+ "eval_loss": 0.6847361326217651,
171
+ "eval_runtime": 2.1372,
172
+ "eval_samples_per_second": 74.395,
173
+ "eval_steps_per_second": 4.679,
174
+ "step": 180
175
+ },
176
+ {
177
+ "epoch": 16.98,
178
+ "eval_accuracy": 0.5849056603773585,
179
+ "eval_loss": 0.6830993294715881,
180
+ "eval_runtime": 2.3473,
181
+ "eval_samples_per_second": 67.739,
182
+ "eval_steps_per_second": 4.26,
183
+ "step": 191
184
+ },
185
+ {
186
+ "epoch": 17.78,
187
+ "grad_norm": 0.5862739086151123,
188
+ "learning_rate": 6.818181818181818e-06,
189
+ "loss": 0.6852,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 17.96,
194
+ "eval_accuracy": 0.5849056603773585,
195
+ "eval_loss": 0.6815393567085266,
196
+ "eval_runtime": 2.1307,
197
+ "eval_samples_per_second": 74.623,
198
+ "eval_steps_per_second": 4.693,
199
+ "step": 202
200
+ },
201
+ {
202
+ "epoch": 18.93,
203
+ "eval_accuracy": 0.5849056603773585,
204
+ "eval_loss": 0.679994523525238,
205
+ "eval_runtime": 2.082,
206
+ "eval_samples_per_second": 76.37,
207
+ "eval_steps_per_second": 4.803,
208
+ "step": 213
209
+ },
210
+ {
211
+ "epoch": 20.0,
212
+ "eval_accuracy": 0.5849056603773585,
213
+ "eval_loss": 0.6782289147377014,
214
+ "eval_runtime": 2.1302,
215
+ "eval_samples_per_second": 74.641,
216
+ "eval_steps_per_second": 4.694,
217
+ "step": 225
218
+ },
219
+ {
220
+ "epoch": 20.98,
221
+ "eval_accuracy": 0.5849056603773585,
222
+ "eval_loss": 0.6765275001525879,
223
+ "eval_runtime": 2.0229,
224
+ "eval_samples_per_second": 78.601,
225
+ "eval_steps_per_second": 4.943,
226
+ "step": 236
227
+ },
228
+ {
229
+ "epoch": 21.96,
230
+ "eval_accuracy": 0.5849056603773585,
231
+ "eval_loss": 0.6749551892280579,
232
+ "eval_runtime": 2.0505,
233
+ "eval_samples_per_second": 77.542,
234
+ "eval_steps_per_second": 4.877,
235
+ "step": 247
236
+ },
237
+ {
238
+ "epoch": 22.22,
239
+ "grad_norm": 0.10243403911590576,
240
+ "learning_rate": 8.522727272727273e-06,
241
+ "loss": 0.6783,
242
+ "step": 250
243
+ },
244
+ {
245
+ "epoch": 22.93,
246
+ "eval_accuracy": 0.5849056603773585,
247
+ "eval_loss": 0.6732170581817627,
248
+ "eval_runtime": 2.0616,
249
+ "eval_samples_per_second": 77.125,
250
+ "eval_steps_per_second": 4.851,
251
+ "step": 258
252
+ },
253
+ {
254
+ "epoch": 24.0,
255
+ "eval_accuracy": 0.5849056603773585,
256
+ "eval_loss": 0.6713252067565918,
257
+ "eval_runtime": 2.1605,
258
+ "eval_samples_per_second": 73.595,
259
+ "eval_steps_per_second": 4.629,
260
+ "step": 270
261
+ },
262
+ {
263
+ "epoch": 24.98,
264
+ "eval_accuracy": 0.5849056603773585,
265
+ "eval_loss": 0.6694673895835876,
266
+ "eval_runtime": 2.0526,
267
+ "eval_samples_per_second": 77.462,
268
+ "eval_steps_per_second": 4.872,
269
+ "step": 281
270
+ },
271
+ {
272
+ "epoch": 25.96,
273
+ "eval_accuracy": 0.5849056603773585,
274
+ "eval_loss": 0.6674391031265259,
275
+ "eval_runtime": 2.1284,
276
+ "eval_samples_per_second": 74.704,
277
+ "eval_steps_per_second": 4.698,
278
+ "step": 292
279
+ },
280
+ {
281
+ "epoch": 26.67,
282
+ "grad_norm": 0.3114006221294403,
283
+ "learning_rate": 1.0227272727272727e-05,
284
+ "loss": 0.6676,
285
+ "step": 300
286
+ },
287
+ {
288
+ "epoch": 26.93,
289
+ "eval_accuracy": 0.5849056603773585,
290
+ "eval_loss": 0.6654335856437683,
291
+ "eval_runtime": 1.9991,
292
+ "eval_samples_per_second": 79.535,
293
+ "eval_steps_per_second": 5.002,
294
+ "step": 303
295
+ },
296
+ {
297
+ "epoch": 28.0,
298
+ "eval_accuracy": 0.5849056603773585,
299
+ "eval_loss": 0.6630644202232361,
300
+ "eval_runtime": 2.0451,
301
+ "eval_samples_per_second": 77.745,
302
+ "eval_steps_per_second": 4.89,
303
+ "step": 315
304
+ },
305
+ {
306
+ "epoch": 28.98,
307
+ "eval_accuracy": 0.5849056603773585,
308
+ "eval_loss": 0.6605831980705261,
309
+ "eval_runtime": 2.0625,
310
+ "eval_samples_per_second": 77.092,
311
+ "eval_steps_per_second": 4.849,
312
+ "step": 326
313
+ },
314
+ {
315
+ "epoch": 29.96,
316
+ "eval_accuracy": 0.5849056603773585,
317
+ "eval_loss": 0.6578991413116455,
318
+ "eval_runtime": 2.0381,
319
+ "eval_samples_per_second": 78.014,
320
+ "eval_steps_per_second": 4.907,
321
+ "step": 337
322
+ },
323
+ {
324
+ "epoch": 30.93,
325
+ "eval_accuracy": 0.5849056603773585,
326
+ "eval_loss": 0.6539114713668823,
327
+ "eval_runtime": 1.9774,
328
+ "eval_samples_per_second": 80.407,
329
+ "eval_steps_per_second": 5.057,
330
+ "step": 348
331
+ },
332
+ {
333
+ "epoch": 31.11,
334
+ "grad_norm": 0.2134709656238556,
335
+ "learning_rate": 1.1931818181818181e-05,
336
+ "loss": 0.6516,
337
+ "step": 350
338
+ },
339
+ {
340
+ "epoch": 32.0,
341
+ "eval_accuracy": 0.5974842767295597,
342
+ "eval_loss": 0.6492742896080017,
343
+ "eval_runtime": 2.0601,
344
+ "eval_samples_per_second": 77.182,
345
+ "eval_steps_per_second": 4.854,
346
+ "step": 360
347
+ },
348
+ {
349
+ "epoch": 32.98,
350
+ "eval_accuracy": 0.610062893081761,
351
+ "eval_loss": 0.6441397070884705,
352
+ "eval_runtime": 2.0739,
353
+ "eval_samples_per_second": 76.667,
354
+ "eval_steps_per_second": 4.822,
355
+ "step": 371
356
+ },
357
+ {
358
+ "epoch": 33.96,
359
+ "eval_accuracy": 0.6226415094339622,
360
+ "eval_loss": 0.6348815560340881,
361
+ "eval_runtime": 2.1526,
362
+ "eval_samples_per_second": 73.865,
363
+ "eval_steps_per_second": 4.646,
364
+ "step": 382
365
+ },
366
+ {
367
+ "epoch": 34.93,
368
+ "eval_accuracy": 0.6289308176100629,
369
+ "eval_loss": 0.6257140040397644,
370
+ "eval_runtime": 2.0081,
371
+ "eval_samples_per_second": 79.179,
372
+ "eval_steps_per_second": 4.98,
373
+ "step": 393
374
+ },
375
+ {
376
+ "epoch": 35.56,
377
+ "grad_norm": 0.8974349498748779,
378
+ "learning_rate": 1.3636363636363637e-05,
379
+ "loss": 0.6124,
380
+ "step": 400
381
+ },
382
+ {
383
+ "epoch": 36.0,
384
+ "eval_accuracy": 0.6415094339622641,
385
+ "eval_loss": 0.611738920211792,
386
+ "eval_runtime": 1.9854,
387
+ "eval_samples_per_second": 80.083,
388
+ "eval_steps_per_second": 5.037,
389
+ "step": 405
390
+ },
391
+ {
392
+ "epoch": 36.98,
393
+ "eval_accuracy": 0.6666666666666666,
394
+ "eval_loss": 0.5910706520080566,
395
+ "eval_runtime": 2.0618,
396
+ "eval_samples_per_second": 77.117,
397
+ "eval_steps_per_second": 4.85,
398
+ "step": 416
399
+ },
400
+ {
401
+ "epoch": 37.96,
402
+ "eval_accuracy": 0.6918238993710691,
403
+ "eval_loss": 0.5672016143798828,
404
+ "eval_runtime": 2.0402,
405
+ "eval_samples_per_second": 77.932,
406
+ "eval_steps_per_second": 4.901,
407
+ "step": 427
408
+ },
409
+ {
410
+ "epoch": 38.93,
411
+ "eval_accuracy": 0.7232704402515723,
412
+ "eval_loss": 0.5392354130744934,
413
+ "eval_runtime": 2.2936,
414
+ "eval_samples_per_second": 69.324,
415
+ "eval_steps_per_second": 4.36,
416
+ "step": 438
417
+ },
418
+ {
419
+ "epoch": 40.0,
420
+ "grad_norm": 0.7736309170722961,
421
+ "learning_rate": 1.534090909090909e-05,
422
+ "loss": 0.5073,
423
+ "step": 450
424
+ },
425
+ {
426
+ "epoch": 40.0,
427
+ "eval_accuracy": 0.7547169811320755,
428
+ "eval_loss": 0.5041937232017517,
429
+ "eval_runtime": 2.1247,
430
+ "eval_samples_per_second": 74.835,
431
+ "eval_steps_per_second": 4.707,
432
+ "step": 450
433
+ },
434
+ {
435
+ "epoch": 40.98,
436
+ "eval_accuracy": 0.7672955974842768,
437
+ "eval_loss": 0.47902750968933105,
438
+ "eval_runtime": 2.163,
439
+ "eval_samples_per_second": 73.509,
440
+ "eval_steps_per_second": 4.623,
441
+ "step": 461
442
+ },
443
+ {
444
+ "epoch": 41.96,
445
+ "eval_accuracy": 0.779874213836478,
446
+ "eval_loss": 0.47594940662384033,
447
+ "eval_runtime": 2.1321,
448
+ "eval_samples_per_second": 74.574,
449
+ "eval_steps_per_second": 4.69,
450
+ "step": 472
451
+ },
452
+ {
453
+ "epoch": 42.93,
454
+ "eval_accuracy": 0.7987421383647799,
455
+ "eval_loss": 0.4369964003562927,
456
+ "eval_runtime": 2.1555,
457
+ "eval_samples_per_second": 73.765,
458
+ "eval_steps_per_second": 4.639,
459
+ "step": 483
460
+ },
461
+ {
462
+ "epoch": 44.0,
463
+ "eval_accuracy": 0.7987421383647799,
464
+ "eval_loss": 0.43516698479652405,
465
+ "eval_runtime": 2.032,
466
+ "eval_samples_per_second": 78.249,
467
+ "eval_steps_per_second": 4.921,
468
+ "step": 495
469
+ },
470
+ {
471
+ "epoch": 44.44,
472
+ "grad_norm": 0.4976819157600403,
473
+ "learning_rate": 1.7045454545454546e-05,
474
+ "loss": 0.3489,
475
+ "step": 500
476
+ },
477
+ {
478
+ "epoch": 44.98,
479
+ "eval_accuracy": 0.7987421383647799,
480
+ "eval_loss": 0.4422326385974884,
481
+ "eval_runtime": 2.1135,
482
+ "eval_samples_per_second": 75.231,
483
+ "eval_steps_per_second": 4.732,
484
+ "step": 506
485
+ },
486
+ {
487
+ "epoch": 45.96,
488
+ "eval_accuracy": 0.8050314465408805,
489
+ "eval_loss": 0.41540881991386414,
490
+ "eval_runtime": 2.0847,
491
+ "eval_samples_per_second": 76.27,
492
+ "eval_steps_per_second": 4.797,
493
+ "step": 517
494
+ },
495
+ {
496
+ "epoch": 46.93,
497
+ "eval_accuracy": 0.8050314465408805,
498
+ "eval_loss": 0.4131433367729187,
499
+ "eval_runtime": 1.9752,
500
+ "eval_samples_per_second": 80.498,
501
+ "eval_steps_per_second": 5.063,
502
+ "step": 528
503
+ },
504
+ {
505
+ "epoch": 48.0,
506
+ "eval_accuracy": 0.8113207547169812,
507
+ "eval_loss": 0.3975575864315033,
508
+ "eval_runtime": 2.01,
509
+ "eval_samples_per_second": 79.104,
510
+ "eval_steps_per_second": 4.975,
511
+ "step": 540
512
+ },
513
+ {
514
+ "epoch": 48.89,
515
+ "grad_norm": 0.5197520852088928,
516
+ "learning_rate": 1.8750000000000002e-05,
517
+ "loss": 0.2962,
518
+ "step": 550
519
+ },
520
+ {
521
+ "epoch": 48.98,
522
+ "eval_accuracy": 0.8113207547169812,
523
+ "eval_loss": 0.39397454261779785,
524
+ "eval_runtime": 2.0261,
525
+ "eval_samples_per_second": 78.474,
526
+ "eval_steps_per_second": 4.935,
527
+ "step": 551
528
+ },
529
+ {
530
+ "epoch": 49.96,
531
+ "eval_accuracy": 0.8238993710691824,
532
+ "eval_loss": 0.371494859457016,
533
+ "eval_runtime": 2.0246,
534
+ "eval_samples_per_second": 78.535,
535
+ "eval_steps_per_second": 4.939,
536
+ "step": 562
537
+ },
538
+ {
539
+ "epoch": 50.93,
540
+ "eval_accuracy": 0.8427672955974843,
541
+ "eval_loss": 0.34951409697532654,
542
+ "eval_runtime": 2.3286,
543
+ "eval_samples_per_second": 68.281,
544
+ "eval_steps_per_second": 4.294,
545
+ "step": 573
546
+ },
547
+ {
548
+ "epoch": 52.0,
549
+ "eval_accuracy": 0.8364779874213837,
550
+ "eval_loss": 0.3481156826019287,
551
+ "eval_runtime": 1.9542,
552
+ "eval_samples_per_second": 81.362,
553
+ "eval_steps_per_second": 5.117,
554
+ "step": 585
555
+ },
556
+ {
557
+ "epoch": 52.98,
558
+ "eval_accuracy": 0.8176100628930818,
559
+ "eval_loss": 0.3817409873008728,
560
+ "eval_runtime": 2.0789,
561
+ "eval_samples_per_second": 76.484,
562
+ "eval_steps_per_second": 4.81,
563
+ "step": 596
564
+ },
565
+ {
566
+ "epoch": 53.33,
567
+ "grad_norm": 0.5608111023902893,
568
+ "learning_rate": 2.0454545454545454e-05,
569
+ "loss": 0.2573,
570
+ "step": 600
571
+ },
572
+ {
573
+ "epoch": 53.96,
574
+ "eval_accuracy": 0.8490566037735849,
575
+ "eval_loss": 0.3412492871284485,
576
+ "eval_runtime": 2.0746,
577
+ "eval_samples_per_second": 76.642,
578
+ "eval_steps_per_second": 4.82,
579
+ "step": 607
580
+ },
581
+ {
582
+ "epoch": 54.93,
583
+ "eval_accuracy": 0.8490566037735849,
584
+ "eval_loss": 0.32929155230522156,
585
+ "eval_runtime": 1.9991,
586
+ "eval_samples_per_second": 79.538,
587
+ "eval_steps_per_second": 5.002,
588
+ "step": 618
589
+ },
590
+ {
591
+ "epoch": 56.0,
592
+ "eval_accuracy": 0.8427672955974843,
593
+ "eval_loss": 0.3547687232494354,
594
+ "eval_runtime": 2.1242,
595
+ "eval_samples_per_second": 74.851,
596
+ "eval_steps_per_second": 4.708,
597
+ "step": 630
598
+ },
599
+ {
600
+ "epoch": 56.98,
601
+ "eval_accuracy": 0.8427672955974843,
602
+ "eval_loss": 0.3044220209121704,
603
+ "eval_runtime": 2.0508,
604
+ "eval_samples_per_second": 77.532,
605
+ "eval_steps_per_second": 4.876,
606
+ "step": 641
607
+ },
608
+ {
609
+ "epoch": 57.78,
610
+ "grad_norm": 0.894092321395874,
611
+ "learning_rate": 2.215909090909091e-05,
612
+ "loss": 0.2279,
613
+ "step": 650
614
+ },
615
+ {
616
+ "epoch": 57.96,
617
+ "eval_accuracy": 0.8490566037735849,
618
+ "eval_loss": 0.32347577810287476,
619
+ "eval_runtime": 2.2095,
620
+ "eval_samples_per_second": 71.963,
621
+ "eval_steps_per_second": 4.526,
622
+ "step": 652
623
+ },
624
+ {
625
+ "epoch": 58.93,
626
+ "eval_accuracy": 0.8490566037735849,
627
+ "eval_loss": 0.3371436297893524,
628
+ "eval_runtime": 2.1055,
629
+ "eval_samples_per_second": 75.518,
630
+ "eval_steps_per_second": 4.75,
631
+ "step": 663
632
+ },
633
+ {
634
+ "epoch": 60.0,
635
+ "eval_accuracy": 0.8490566037735849,
636
+ "eval_loss": 0.31275492906570435,
637
+ "eval_runtime": 2.1311,
638
+ "eval_samples_per_second": 74.61,
639
+ "eval_steps_per_second": 4.692,
640
+ "step": 675
641
+ },
642
+ {
643
+ "epoch": 60.98,
644
+ "eval_accuracy": 0.8553459119496856,
645
+ "eval_loss": 0.32111966609954834,
646
+ "eval_runtime": 2.0639,
647
+ "eval_samples_per_second": 77.038,
648
+ "eval_steps_per_second": 4.845,
649
+ "step": 686
650
+ },
651
+ {
652
+ "epoch": 61.96,
653
+ "eval_accuracy": 0.8616352201257862,
654
+ "eval_loss": 0.302960604429245,
655
+ "eval_runtime": 2.0241,
656
+ "eval_samples_per_second": 78.552,
657
+ "eval_steps_per_second": 4.94,
658
+ "step": 697
659
+ },
660
+ {
661
+ "epoch": 62.22,
662
+ "grad_norm": 0.4315973222255707,
663
+ "learning_rate": 2.3863636363636362e-05,
664
+ "loss": 0.2167,
665
+ "step": 700
666
+ },
667
+ {
668
+ "epoch": 62.93,
669
+ "eval_accuracy": 0.8616352201257862,
670
+ "eval_loss": 0.29696550965309143,
671
+ "eval_runtime": 2.034,
672
+ "eval_samples_per_second": 78.169,
673
+ "eval_steps_per_second": 4.916,
674
+ "step": 708
675
+ },
676
+ {
677
+ "epoch": 64.0,
678
+ "eval_accuracy": 0.8679245283018868,
679
+ "eval_loss": 0.29949402809143066,
680
+ "eval_runtime": 2.095,
681
+ "eval_samples_per_second": 75.897,
682
+ "eval_steps_per_second": 4.773,
683
+ "step": 720
684
+ },
685
+ {
686
+ "epoch": 64.98,
687
+ "eval_accuracy": 0.8742138364779874,
688
+ "eval_loss": 0.2867083251476288,
689
+ "eval_runtime": 2.0417,
690
+ "eval_samples_per_second": 77.876,
691
+ "eval_steps_per_second": 4.898,
692
+ "step": 731
693
+ },
694
+ {
695
+ "epoch": 65.96,
696
+ "eval_accuracy": 0.8930817610062893,
697
+ "eval_loss": 0.26363295316696167,
698
+ "eval_runtime": 2.1382,
699
+ "eval_samples_per_second": 74.363,
700
+ "eval_steps_per_second": 4.677,
701
+ "step": 742
702
+ },
703
+ {
704
+ "epoch": 66.67,
705
+ "grad_norm": 0.37665870785713196,
706
+ "learning_rate": 2.556818181818182e-05,
707
+ "loss": 0.207,
708
+ "step": 750
709
+ },
710
+ {
711
+ "epoch": 66.93,
712
+ "eval_accuracy": 0.8805031446540881,
713
+ "eval_loss": 0.28482353687286377,
714
+ "eval_runtime": 2.1166,
715
+ "eval_samples_per_second": 75.119,
716
+ "eval_steps_per_second": 4.724,
717
+ "step": 753
718
+ },
719
+ {
720
+ "epoch": 68.0,
721
+ "eval_accuracy": 0.8867924528301887,
722
+ "eval_loss": 0.2750767767429352,
723
+ "eval_runtime": 2.1981,
724
+ "eval_samples_per_second": 72.336,
725
+ "eval_steps_per_second": 4.549,
726
+ "step": 765
727
+ },
728
+ {
729
+ "epoch": 68.98,
730
+ "eval_accuracy": 0.8930817610062893,
731
+ "eval_loss": 0.256393700838089,
732
+ "eval_runtime": 2.033,
733
+ "eval_samples_per_second": 78.211,
734
+ "eval_steps_per_second": 4.919,
735
+ "step": 776
736
+ },
737
+ {
738
+ "epoch": 69.96,
739
+ "eval_accuracy": 0.8930817610062893,
740
+ "eval_loss": 0.25443732738494873,
741
+ "eval_runtime": 2.0096,
742
+ "eval_samples_per_second": 79.121,
743
+ "eval_steps_per_second": 4.976,
744
+ "step": 787
745
+ },
746
+ {
747
+ "epoch": 70.93,
748
+ "eval_accuracy": 0.8742138364779874,
749
+ "eval_loss": 0.2954423129558563,
750
+ "eval_runtime": 2.1018,
751
+ "eval_samples_per_second": 75.649,
752
+ "eval_steps_per_second": 4.758,
753
+ "step": 798
754
+ },
755
+ {
756
+ "epoch": 71.11,
757
+ "grad_norm": 0.7302255630493164,
758
+ "learning_rate": 2.7272727272727273e-05,
759
+ "loss": 0.1899,
760
+ "step": 800
761
+ },
762
+ {
763
+ "epoch": 72.0,
764
+ "eval_accuracy": 0.8930817610062893,
765
+ "eval_loss": 0.25169771909713745,
766
+ "eval_runtime": 2.041,
767
+ "eval_samples_per_second": 77.904,
768
+ "eval_steps_per_second": 4.9,
769
+ "step": 810
770
+ },
771
+ {
772
+ "epoch": 72.98,
773
+ "eval_accuracy": 0.8930817610062893,
774
+ "eval_loss": 0.2506076693534851,
775
+ "eval_runtime": 2.0257,
776
+ "eval_samples_per_second": 78.49,
777
+ "eval_steps_per_second": 4.936,
778
+ "step": 821
779
+ },
780
+ {
781
+ "epoch": 73.96,
782
+ "eval_accuracy": 0.8930817610062893,
783
+ "eval_loss": 0.2434261441230774,
784
+ "eval_runtime": 2.0325,
785
+ "eval_samples_per_second": 78.23,
786
+ "eval_steps_per_second": 4.92,
787
+ "step": 832
788
+ },
789
+ {
790
+ "epoch": 74.93,
791
+ "eval_accuracy": 0.89937106918239,
792
+ "eval_loss": 0.23832084238529205,
793
+ "eval_runtime": 2.1871,
794
+ "eval_samples_per_second": 72.699,
795
+ "eval_steps_per_second": 4.572,
796
+ "step": 843
797
+ },
798
+ {
799
+ "epoch": 75.56,
800
+ "grad_norm": 0.5180615186691284,
801
+ "learning_rate": 2.897727272727273e-05,
802
+ "loss": 0.1801,
803
+ "step": 850
804
+ },
805
+ {
806
+ "epoch": 76.0,
807
+ "eval_accuracy": 0.89937106918239,
808
+ "eval_loss": 0.23464229702949524,
809
+ "eval_runtime": 2.026,
810
+ "eval_samples_per_second": 78.48,
811
+ "eval_steps_per_second": 4.936,
812
+ "step": 855
813
+ },
814
+ {
815
+ "epoch": 76.98,
816
+ "eval_accuracy": 0.89937106918239,
817
+ "eval_loss": 0.22975026071071625,
818
+ "eval_runtime": 2.0881,
819
+ "eval_samples_per_second": 76.147,
820
+ "eval_steps_per_second": 4.789,
821
+ "step": 866
822
+ },
823
+ {
824
+ "epoch": 77.96,
825
+ "eval_accuracy": 0.9056603773584906,
826
+ "eval_loss": 0.2403678596019745,
827
+ "eval_runtime": 2.075,
828
+ "eval_samples_per_second": 76.626,
829
+ "eval_steps_per_second": 4.819,
830
+ "step": 877
831
+ },
832
+ {
833
+ "epoch": 78.93,
834
+ "eval_accuracy": 0.8930817610062893,
835
+ "eval_loss": 0.2674010097980499,
836
+ "eval_runtime": 2.037,
837
+ "eval_samples_per_second": 78.057,
838
+ "eval_steps_per_second": 4.909,
839
+ "step": 888
840
+ },
841
+ {
842
+ "epoch": 80.0,
843
+ "grad_norm": 1.2135472297668457,
844
+ "learning_rate": 2.9924242424242427e-05,
845
+ "loss": 0.1692,
846
+ "step": 900
847
+ },
848
+ {
849
+ "epoch": 80.0,
850
+ "eval_accuracy": 0.89937106918239,
851
+ "eval_loss": 0.2231501042842865,
852
+ "eval_runtime": 2.0398,
853
+ "eval_samples_per_second": 77.949,
854
+ "eval_steps_per_second": 4.902,
855
+ "step": 900
856
+ },
857
+ {
858
+ "epoch": 80.98,
859
+ "eval_accuracy": 0.89937106918239,
860
+ "eval_loss": 0.2390480935573578,
861
+ "eval_runtime": 1.9822,
862
+ "eval_samples_per_second": 80.213,
863
+ "eval_steps_per_second": 5.045,
864
+ "step": 911
865
+ },
866
+ {
867
+ "epoch": 81.96,
868
+ "eval_accuracy": 0.8930817610062893,
869
+ "eval_loss": 0.20583955943584442,
870
+ "eval_runtime": 2.0665,
871
+ "eval_samples_per_second": 76.94,
872
+ "eval_steps_per_second": 4.839,
873
+ "step": 922
874
+ },
875
+ {
876
+ "epoch": 82.93,
877
+ "eval_accuracy": 0.9056603773584906,
878
+ "eval_loss": 0.2114023119211197,
879
+ "eval_runtime": 2.0736,
880
+ "eval_samples_per_second": 76.678,
881
+ "eval_steps_per_second": 4.823,
882
+ "step": 933
883
+ },
884
+ {
885
+ "epoch": 84.0,
886
+ "eval_accuracy": 0.89937106918239,
887
+ "eval_loss": 0.24830691516399384,
888
+ "eval_runtime": 2.0148,
889
+ "eval_samples_per_second": 78.915,
890
+ "eval_steps_per_second": 4.963,
891
+ "step": 945
892
+ },
893
+ {
894
+ "epoch": 84.44,
895
+ "grad_norm": 0.5111488103866577,
896
+ "learning_rate": 2.9734848484848486e-05,
897
+ "loss": 0.1691,
898
+ "step": 950
899
+ },
900
+ {
901
+ "epoch": 84.98,
902
+ "eval_accuracy": 0.9119496855345912,
903
+ "eval_loss": 0.2259017676115036,
904
+ "eval_runtime": 2.2201,
905
+ "eval_samples_per_second": 71.618,
906
+ "eval_steps_per_second": 4.504,
907
+ "step": 956
908
+ },
909
+ {
910
+ "epoch": 85.96,
911
+ "eval_accuracy": 0.9119496855345912,
912
+ "eval_loss": 0.20239894092082977,
913
+ "eval_runtime": 2.0671,
914
+ "eval_samples_per_second": 76.918,
915
+ "eval_steps_per_second": 4.838,
916
+ "step": 967
917
+ },
918
+ {
919
+ "epoch": 86.93,
920
+ "eval_accuracy": 0.89937106918239,
921
+ "eval_loss": 0.20193150639533997,
922
+ "eval_runtime": 2.0416,
923
+ "eval_samples_per_second": 77.879,
924
+ "eval_steps_per_second": 4.898,
925
+ "step": 978
926
+ },
927
+ {
928
+ "epoch": 88.0,
929
+ "eval_accuracy": 0.9245283018867925,
930
+ "eval_loss": 0.19625458121299744,
931
+ "eval_runtime": 2.0196,
932
+ "eval_samples_per_second": 78.73,
933
+ "eval_steps_per_second": 4.952,
934
+ "step": 990
935
+ },
936
+ {
937
+ "epoch": 88.89,
938
+ "grad_norm": 0.4683234989643097,
939
+ "learning_rate": 2.9545454545454545e-05,
940
+ "loss": 0.1609,
941
+ "step": 1000
942
+ },
943
+ {
944
+ "epoch": 88.98,
945
+ "eval_accuracy": 0.9119496855345912,
946
+ "eval_loss": 0.21583892405033112,
947
+ "eval_runtime": 2.0254,
948
+ "eval_samples_per_second": 78.503,
949
+ "eval_steps_per_second": 4.937,
950
+ "step": 1001
951
+ },
952
+ {
953
+ "epoch": 89.96,
954
+ "eval_accuracy": 0.9119496855345912,
955
+ "eval_loss": 0.197691410779953,
956
+ "eval_runtime": 1.9978,
957
+ "eval_samples_per_second": 79.586,
958
+ "eval_steps_per_second": 5.005,
959
+ "step": 1012
960
+ },
961
+ {
962
+ "epoch": 90.93,
963
+ "eval_accuracy": 0.9182389937106918,
964
+ "eval_loss": 0.19791610538959503,
965
+ "eval_runtime": 2.0853,
966
+ "eval_samples_per_second": 76.248,
967
+ "eval_steps_per_second": 4.795,
968
+ "step": 1023
969
+ },
970
+ {
971
+ "epoch": 92.0,
972
+ "eval_accuracy": 0.9119496855345912,
973
+ "eval_loss": 0.20358721911907196,
974
+ "eval_runtime": 2.1963,
975
+ "eval_samples_per_second": 72.393,
976
+ "eval_steps_per_second": 4.553,
977
+ "step": 1035
978
+ },
979
+ {
980
+ "epoch": 92.98,
981
+ "eval_accuracy": 0.9245283018867925,
982
+ "eval_loss": 0.19769711792469025,
983
+ "eval_runtime": 2.0089,
984
+ "eval_samples_per_second": 79.146,
985
+ "eval_steps_per_second": 4.978,
986
+ "step": 1046
987
+ },
988
+ {
989
+ "epoch": 93.33,
990
+ "grad_norm": 0.6099847555160522,
991
+ "learning_rate": 2.9356060606060604e-05,
992
+ "loss": 0.1516,
993
+ "step": 1050
994
+ },
995
+ {
996
+ "epoch": 93.96,
997
+ "eval_accuracy": 0.9182389937106918,
998
+ "eval_loss": 0.1974458247423172,
999
+ "eval_runtime": 2.1182,
1000
+ "eval_samples_per_second": 75.065,
1001
+ "eval_steps_per_second": 4.721,
1002
+ "step": 1057
1003
+ },
1004
+ {
1005
+ "epoch": 94.93,
1006
+ "eval_accuracy": 0.9245283018867925,
1007
+ "eval_loss": 0.1993919163942337,
1008
+ "eval_runtime": 2.0707,
1009
+ "eval_samples_per_second": 76.787,
1010
+ "eval_steps_per_second": 4.829,
1011
+ "step": 1068
1012
+ },
1013
+ {
1014
+ "epoch": 96.0,
1015
+ "eval_accuracy": 0.9119496855345912,
1016
+ "eval_loss": 0.1955273449420929,
1017
+ "eval_runtime": 2.0163,
1018
+ "eval_samples_per_second": 78.858,
1019
+ "eval_steps_per_second": 4.96,
1020
+ "step": 1080
1021
+ },
1022
+ {
1023
+ "epoch": 96.98,
1024
+ "eval_accuracy": 0.9119496855345912,
1025
+ "eval_loss": 0.19483698904514313,
1026
+ "eval_runtime": 2.0495,
1027
+ "eval_samples_per_second": 77.581,
1028
+ "eval_steps_per_second": 4.879,
1029
+ "step": 1091
1030
+ },
1031
+ {
1032
+ "epoch": 97.78,
1033
+ "grad_norm": 1.0578981637954712,
1034
+ "learning_rate": 2.9166666666666666e-05,
1035
+ "loss": 0.1386,
1036
+ "step": 1100
1037
+ },
1038
+ {
1039
+ "epoch": 97.96,
1040
+ "eval_accuracy": 0.9245283018867925,
1041
+ "eval_loss": 0.19463855028152466,
1042
+ "eval_runtime": 2.0625,
1043
+ "eval_samples_per_second": 77.091,
1044
+ "eval_steps_per_second": 4.849,
1045
+ "step": 1102
1046
+ },
1047
+ {
1048
+ "epoch": 98.93,
1049
+ "eval_accuracy": 0.9245283018867925,
1050
+ "eval_loss": 0.19323910772800446,
1051
+ "eval_runtime": 2.0028,
1052
+ "eval_samples_per_second": 79.389,
1053
+ "eval_steps_per_second": 4.993,
1054
+ "step": 1113
1055
+ },
1056
+ {
1057
+ "epoch": 100.0,
1058
+ "eval_accuracy": 0.9371069182389937,
1059
+ "eval_loss": 0.1841806173324585,
1060
+ "eval_runtime": 2.1056,
1061
+ "eval_samples_per_second": 75.512,
1062
+ "eval_steps_per_second": 4.749,
1063
+ "step": 1125
1064
+ },
1065
+ {
1066
+ "epoch": 100.98,
1067
+ "eval_accuracy": 0.9308176100628931,
1068
+ "eval_loss": 0.18839451670646667,
1069
+ "eval_runtime": 1.9858,
1070
+ "eval_samples_per_second": 80.07,
1071
+ "eval_steps_per_second": 5.036,
1072
+ "step": 1136
1073
+ },
1074
+ {
1075
+ "epoch": 101.96,
1076
+ "eval_accuracy": 0.9371069182389937,
1077
+ "eval_loss": 0.1899903267621994,
1078
+ "eval_runtime": 2.2196,
1079
+ "eval_samples_per_second": 71.635,
1080
+ "eval_steps_per_second": 4.505,
1081
+ "step": 1147
1082
+ },
1083
+ {
1084
+ "epoch": 102.22,
1085
+ "grad_norm": 0.6229210495948792,
1086
+ "learning_rate": 2.897727272727273e-05,
1087
+ "loss": 0.1279,
1088
+ "step": 1150
1089
+ },
1090
+ {
1091
+ "epoch": 102.93,
1092
+ "eval_accuracy": 0.9308176100628931,
1093
+ "eval_loss": 0.184115469455719,
1094
+ "eval_runtime": 2.0229,
1095
+ "eval_samples_per_second": 78.602,
1096
+ "eval_steps_per_second": 4.944,
1097
+ "step": 1158
1098
+ },
1099
+ {
1100
+ "epoch": 104.0,
1101
+ "eval_accuracy": 0.9245283018867925,
1102
+ "eval_loss": 0.19207227230072021,
1103
+ "eval_runtime": 1.9639,
1104
+ "eval_samples_per_second": 80.962,
1105
+ "eval_steps_per_second": 5.092,
1106
+ "step": 1170
1107
+ },
1108
+ {
1109
+ "epoch": 104.98,
1110
+ "eval_accuracy": 0.9245283018867925,
1111
+ "eval_loss": 0.19926591217517853,
1112
+ "eval_runtime": 2.0509,
1113
+ "eval_samples_per_second": 77.526,
1114
+ "eval_steps_per_second": 4.876,
1115
+ "step": 1181
1116
+ },
1117
+ {
1118
+ "epoch": 105.96,
1119
+ "eval_accuracy": 0.9308176100628931,
1120
+ "eval_loss": 0.19455212354660034,
1121
+ "eval_runtime": 2.0496,
1122
+ "eval_samples_per_second": 77.577,
1123
+ "eval_steps_per_second": 4.879,
1124
+ "step": 1192
1125
+ },
1126
+ {
1127
+ "epoch": 106.67,
1128
+ "grad_norm": 1.2741256952285767,
1129
+ "learning_rate": 2.8787878787878788e-05,
1130
+ "loss": 0.1258,
1131
+ "step": 1200
1132
+ },
1133
+ {
1134
+ "epoch": 106.93,
1135
+ "eval_accuracy": 0.9308176100628931,
1136
+ "eval_loss": 0.18963727355003357,
1137
+ "eval_runtime": 2.0026,
1138
+ "eval_samples_per_second": 79.395,
1139
+ "eval_steps_per_second": 4.993,
1140
+ "step": 1203
1141
+ },
1142
+ {
1143
+ "epoch": 108.0,
1144
+ "eval_accuracy": 0.9308176100628931,
1145
+ "eval_loss": 0.1884273737668991,
1146
+ "eval_runtime": 2.0343,
1147
+ "eval_samples_per_second": 78.16,
1148
+ "eval_steps_per_second": 4.916,
1149
+ "step": 1215
1150
+ },
1151
+ {
1152
+ "epoch": 108.98,
1153
+ "eval_accuracy": 0.9433962264150944,
1154
+ "eval_loss": 0.17940251529216766,
1155
+ "eval_runtime": 2.1734,
1156
+ "eval_samples_per_second": 73.156,
1157
+ "eval_steps_per_second": 4.601,
1158
+ "step": 1226
1159
+ },
1160
+ {
1161
+ "epoch": 109.96,
1162
+ "eval_accuracy": 0.9245283018867925,
1163
+ "eval_loss": 0.18589730560779572,
1164
+ "eval_runtime": 2.0874,
1165
+ "eval_samples_per_second": 76.17,
1166
+ "eval_steps_per_second": 4.791,
1167
+ "step": 1237
1168
+ },
1169
+ {
1170
+ "epoch": 110.93,
1171
+ "eval_accuracy": 0.9119496855345912,
1172
+ "eval_loss": 0.2194768339395523,
1173
+ "eval_runtime": 2.0717,
1174
+ "eval_samples_per_second": 76.747,
1175
+ "eval_steps_per_second": 4.827,
1176
+ "step": 1248
1177
+ },
1178
+ {
1179
+ "epoch": 111.11,
1180
+ "grad_norm": 0.3613344430923462,
1181
+ "learning_rate": 2.859848484848485e-05,
1182
+ "loss": 0.1258,
1183
+ "step": 1250
1184
+ },
1185
+ {
1186
+ "epoch": 112.0,
1187
+ "eval_accuracy": 0.9182389937106918,
1188
+ "eval_loss": 0.20826272666454315,
1189
+ "eval_runtime": 1.9861,
1190
+ "eval_samples_per_second": 80.057,
1191
+ "eval_steps_per_second": 5.035,
1192
+ "step": 1260
1193
+ },
1194
+ {
1195
+ "epoch": 112.98,
1196
+ "eval_accuracy": 0.9245283018867925,
1197
+ "eval_loss": 0.21202689409255981,
1198
+ "eval_runtime": 2.0132,
1199
+ "eval_samples_per_second": 78.98,
1200
+ "eval_steps_per_second": 4.967,
1201
+ "step": 1271
1202
+ },
1203
+ {
1204
+ "epoch": 113.96,
1205
+ "eval_accuracy": 0.9308176100628931,
1206
+ "eval_loss": 0.20663346350193024,
1207
+ "eval_runtime": 2.02,
1208
+ "eval_samples_per_second": 78.711,
1209
+ "eval_steps_per_second": 4.95,
1210
+ "step": 1282
1211
+ },
1212
+ {
1213
+ "epoch": 114.93,
1214
+ "eval_accuracy": 0.9308176100628931,
1215
+ "eval_loss": 0.1931203156709671,
1216
+ "eval_runtime": 2.033,
1217
+ "eval_samples_per_second": 78.208,
1218
+ "eval_steps_per_second": 4.919,
1219
+ "step": 1293
1220
+ },
1221
+ {
1222
+ "epoch": 115.56,
1223
+ "grad_norm": 0.7503376007080078,
1224
+ "learning_rate": 2.8409090909090912e-05,
1225
+ "loss": 0.1023,
1226
+ "step": 1300
1227
+ },
1228
+ {
1229
+ "epoch": 116.0,
1230
+ "eval_accuracy": 0.9308176100628931,
1231
+ "eval_loss": 0.19000084698200226,
1232
+ "eval_runtime": 2.0014,
1233
+ "eval_samples_per_second": 79.446,
1234
+ "eval_steps_per_second": 4.997,
1235
+ "step": 1305
1236
+ },
1237
+ {
1238
+ "epoch": 116.98,
1239
+ "eval_accuracy": 0.9308176100628931,
1240
+ "eval_loss": 0.20288796722888947,
1241
+ "eval_runtime": 2.0774,
1242
+ "eval_samples_per_second": 76.539,
1243
+ "eval_steps_per_second": 4.814,
1244
+ "step": 1316
1245
+ },
1246
+ {
1247
+ "epoch": 117.96,
1248
+ "eval_accuracy": 0.9245283018867925,
1249
+ "eval_loss": 0.19505923986434937,
1250
+ "eval_runtime": 2.0552,
1251
+ "eval_samples_per_second": 77.366,
1252
+ "eval_steps_per_second": 4.866,
1253
+ "step": 1327
1254
+ },
1255
+ {
1256
+ "epoch": 118.93,
1257
+ "eval_accuracy": 0.9119496855345912,
1258
+ "eval_loss": 0.20838169753551483,
1259
+ "eval_runtime": 2.2371,
1260
+ "eval_samples_per_second": 71.074,
1261
+ "eval_steps_per_second": 4.47,
1262
+ "step": 1338
1263
+ },
1264
+ {
1265
+ "epoch": 120.0,
1266
+ "grad_norm": 0.2376416176557541,
1267
+ "learning_rate": 2.821969696969697e-05,
1268
+ "loss": 0.0997,
1269
+ "step": 1350
1270
+ },
1271
+ {
1272
+ "epoch": 120.0,
1273
+ "eval_accuracy": 0.9245283018867925,
1274
+ "eval_loss": 0.2159019112586975,
1275
+ "eval_runtime": 2.0579,
1276
+ "eval_samples_per_second": 77.264,
1277
+ "eval_steps_per_second": 4.859,
1278
+ "step": 1350
1279
+ },
1280
+ {
1281
+ "epoch": 120.98,
1282
+ "eval_accuracy": 0.9245283018867925,
1283
+ "eval_loss": 0.21662545204162598,
1284
+ "eval_runtime": 2.0756,
1285
+ "eval_samples_per_second": 76.605,
1286
+ "eval_steps_per_second": 4.818,
1287
+ "step": 1361
1288
+ },
1289
+ {
1290
+ "epoch": 121.96,
1291
+ "eval_accuracy": 0.9308176100628931,
1292
+ "eval_loss": 0.197323277592659,
1293
+ "eval_runtime": 2.0227,
1294
+ "eval_samples_per_second": 78.607,
1295
+ "eval_steps_per_second": 4.944,
1296
+ "step": 1372
1297
+ },
1298
+ {
1299
+ "epoch": 122.93,
1300
+ "eval_accuracy": 0.9245283018867925,
1301
+ "eval_loss": 0.18507684767246246,
1302
+ "eval_runtime": 2.0728,
1303
+ "eval_samples_per_second": 76.706,
1304
+ "eval_steps_per_second": 4.824,
1305
+ "step": 1383
1306
+ },
1307
+ {
1308
+ "epoch": 124.0,
1309
+ "eval_accuracy": 0.9245283018867925,
1310
+ "eval_loss": 0.20666691660881042,
1311
+ "eval_runtime": 1.9717,
1312
+ "eval_samples_per_second": 80.642,
1313
+ "eval_steps_per_second": 5.072,
1314
+ "step": 1395
1315
+ },
1316
+ {
1317
+ "epoch": 124.44,
1318
+ "grad_norm": 0.3115290403366089,
1319
+ "learning_rate": 2.803030303030303e-05,
1320
+ "loss": 0.1021,
1321
+ "step": 1400
1322
+ },
1323
+ {
1324
+ "epoch": 124.98,
1325
+ "eval_accuracy": 0.9245283018867925,
1326
+ "eval_loss": 0.19534242153167725,
1327
+ "eval_runtime": 2.0497,
1328
+ "eval_samples_per_second": 77.571,
1329
+ "eval_steps_per_second": 4.879,
1330
+ "step": 1406
1331
+ },
1332
+ {
1333
+ "epoch": 125.96,
1334
+ "eval_accuracy": 0.9433962264150944,
1335
+ "eval_loss": 0.17650572955608368,
1336
+ "eval_runtime": 2.239,
1337
+ "eval_samples_per_second": 71.015,
1338
+ "eval_steps_per_second": 4.466,
1339
+ "step": 1417
1340
+ },
1341
+ {
1342
+ "epoch": 126.93,
1343
+ "eval_accuracy": 0.9308176100628931,
1344
+ "eval_loss": 0.18782062828540802,
1345
+ "eval_runtime": 2.0533,
1346
+ "eval_samples_per_second": 77.437,
1347
+ "eval_steps_per_second": 4.87,
1348
+ "step": 1428
1349
+ },
1350
+ {
1351
+ "epoch": 128.0,
1352
+ "eval_accuracy": 0.9245283018867925,
1353
+ "eval_loss": 0.20708344876766205,
1354
+ "eval_runtime": 2.0414,
1355
+ "eval_samples_per_second": 77.887,
1356
+ "eval_steps_per_second": 4.899,
1357
+ "step": 1440
1358
+ },
1359
+ {
1360
+ "epoch": 128.89,
1361
+ "grad_norm": 1.2413551807403564,
1362
+ "learning_rate": 2.784090909090909e-05,
1363
+ "loss": 0.0883,
1364
+ "step": 1450
1365
+ },
1366
+ {
1367
+ "epoch": 128.98,
1368
+ "eval_accuracy": 0.9182389937106918,
1369
+ "eval_loss": 0.2241077572107315,
1370
+ "eval_runtime": 1.9826,
1371
+ "eval_samples_per_second": 80.197,
1372
+ "eval_steps_per_second": 5.044,
1373
+ "step": 1451
1374
+ },
1375
+ {
1376
+ "epoch": 129.96,
1377
+ "eval_accuracy": 0.9119496855345912,
1378
+ "eval_loss": 0.23481474816799164,
1379
+ "eval_runtime": 1.9747,
1380
+ "eval_samples_per_second": 80.518,
1381
+ "eval_steps_per_second": 5.064,
1382
+ "step": 1462
1383
+ },
1384
+ {
1385
+ "epoch": 130.93,
1386
+ "eval_accuracy": 0.9056603773584906,
1387
+ "eval_loss": 0.24748335778713226,
1388
+ "eval_runtime": 1.9737,
1389
+ "eval_samples_per_second": 80.559,
1390
+ "eval_steps_per_second": 5.067,
1391
+ "step": 1473
1392
+ },
1393
+ {
1394
+ "epoch": 132.0,
1395
+ "eval_accuracy": 0.9182389937106918,
1396
+ "eval_loss": 0.21596243977546692,
1397
+ "eval_runtime": 2.0455,
1398
+ "eval_samples_per_second": 77.733,
1399
+ "eval_steps_per_second": 4.889,
1400
+ "step": 1485
1401
+ },
1402
+ {
1403
+ "epoch": 132.98,
1404
+ "eval_accuracy": 0.9308176100628931,
1405
+ "eval_loss": 0.20896825194358826,
1406
+ "eval_runtime": 2.047,
1407
+ "eval_samples_per_second": 77.675,
1408
+ "eval_steps_per_second": 4.885,
1409
+ "step": 1496
1410
+ },
1411
+ {
1412
+ "epoch": 133.33,
1413
+ "grad_norm": 0.56540846824646,
1414
+ "learning_rate": 2.7651515151515152e-05,
1415
+ "loss": 0.0769,
1416
+ "step": 1500
1417
+ },
1418
+ {
1419
+ "epoch": 133.96,
1420
+ "eval_accuracy": 0.9245283018867925,
1421
+ "eval_loss": 0.21468934416770935,
1422
+ "eval_runtime": 1.9936,
1423
+ "eval_samples_per_second": 79.754,
1424
+ "eval_steps_per_second": 5.016,
1425
+ "step": 1507
1426
+ },
1427
+ {
1428
+ "epoch": 134.93,
1429
+ "eval_accuracy": 0.9245283018867925,
1430
+ "eval_loss": 0.22008037567138672,
1431
+ "eval_runtime": 2.0857,
1432
+ "eval_samples_per_second": 76.234,
1433
+ "eval_steps_per_second": 4.795,
1434
+ "step": 1518
1435
+ },
1436
+ {
1437
+ "epoch": 136.0,
1438
+ "eval_accuracy": 0.9182389937106918,
1439
+ "eval_loss": 0.23723578453063965,
1440
+ "eval_runtime": 2.1872,
1441
+ "eval_samples_per_second": 72.695,
1442
+ "eval_steps_per_second": 4.572,
1443
+ "step": 1530
1444
+ },
1445
+ {
1446
+ "epoch": 136.98,
1447
+ "eval_accuracy": 0.9182389937106918,
1448
+ "eval_loss": 0.21990692615509033,
1449
+ "eval_runtime": 2.0473,
1450
+ "eval_samples_per_second": 77.664,
1451
+ "eval_steps_per_second": 4.885,
1452
+ "step": 1541
1453
+ },
1454
+ {
1455
+ "epoch": 137.78,
1456
+ "grad_norm": 1.0245180130004883,
1457
+ "learning_rate": 2.7462121212121214e-05,
1458
+ "loss": 0.0786,
1459
+ "step": 1550
1460
+ },
1461
+ {
1462
+ "epoch": 137.96,
1463
+ "eval_accuracy": 0.9182389937106918,
1464
+ "eval_loss": 0.2087443619966507,
1465
+ "eval_runtime": 2.0577,
1466
+ "eval_samples_per_second": 77.271,
1467
+ "eval_steps_per_second": 4.86,
1468
+ "step": 1552
1469
+ },
1470
+ {
1471
+ "epoch": 138.93,
1472
+ "eval_accuracy": 0.9308176100628931,
1473
+ "eval_loss": 0.18779344856739044,
1474
+ "eval_runtime": 2.0799,
1475
+ "eval_samples_per_second": 76.447,
1476
+ "eval_steps_per_second": 4.808,
1477
+ "step": 1563
1478
+ },
1479
+ {
1480
+ "epoch": 140.0,
1481
+ "eval_accuracy": 0.9371069182389937,
1482
+ "eval_loss": 0.1914655864238739,
1483
+ "eval_runtime": 2.043,
1484
+ "eval_samples_per_second": 77.827,
1485
+ "eval_steps_per_second": 4.895,
1486
+ "step": 1575
1487
+ },
1488
+ {
1489
+ "epoch": 140.98,
1490
+ "eval_accuracy": 0.9245283018867925,
1491
+ "eval_loss": 0.23168283700942993,
1492
+ "eval_runtime": 2.0313,
1493
+ "eval_samples_per_second": 78.277,
1494
+ "eval_steps_per_second": 4.923,
1495
+ "step": 1586
1496
+ },
1497
+ {
1498
+ "epoch": 141.96,
1499
+ "eval_accuracy": 0.8930817610062893,
1500
+ "eval_loss": 0.2865447700023651,
1501
+ "eval_runtime": 2.0095,
1502
+ "eval_samples_per_second": 79.125,
1503
+ "eval_steps_per_second": 4.976,
1504
+ "step": 1597
1505
+ },
1506
+ {
1507
+ "epoch": 142.22,
1508
+ "grad_norm": 1.393044352531433,
1509
+ "learning_rate": 2.7272727272727273e-05,
1510
+ "loss": 0.0714,
1511
+ "step": 1600
1512
+ },
1513
+ {
1514
+ "epoch": 142.93,
1515
+ "eval_accuracy": 0.9245283018867925,
1516
+ "eval_loss": 0.22998519241809845,
1517
+ "eval_runtime": 2.1842,
1518
+ "eval_samples_per_second": 72.794,
1519
+ "eval_steps_per_second": 4.578,
1520
+ "step": 1608
1521
+ },
1522
+ {
1523
+ "epoch": 144.0,
1524
+ "eval_accuracy": 0.9056603773584906,
1525
+ "eval_loss": 0.27265357971191406,
1526
+ "eval_runtime": 2.0318,
1527
+ "eval_samples_per_second": 78.258,
1528
+ "eval_steps_per_second": 4.922,
1529
+ "step": 1620
1530
+ },
1531
+ {
1532
+ "epoch": 144.98,
1533
+ "eval_accuracy": 0.9056603773584906,
1534
+ "eval_loss": 0.28114742040634155,
1535
+ "eval_runtime": 2.0949,
1536
+ "eval_samples_per_second": 75.9,
1537
+ "eval_steps_per_second": 4.774,
1538
+ "step": 1631
1539
+ },
1540
+ {
1541
+ "epoch": 145.96,
1542
+ "eval_accuracy": 0.9371069182389937,
1543
+ "eval_loss": 0.21014899015426636,
1544
+ "eval_runtime": 2.0829,
1545
+ "eval_samples_per_second": 76.335,
1546
+ "eval_steps_per_second": 4.801,
1547
+ "step": 1642
1548
+ },
1549
+ {
1550
+ "epoch": 146.67,
1551
+ "grad_norm": 1.1527929306030273,
1552
+ "learning_rate": 2.7083333333333335e-05,
1553
+ "loss": 0.0702,
1554
+ "step": 1650
1555
+ },
1556
+ {
1557
+ "epoch": 146.93,
1558
+ "eval_accuracy": 0.9308176100628931,
1559
+ "eval_loss": 0.20363318920135498,
1560
+ "eval_runtime": 2.0224,
1561
+ "eval_samples_per_second": 78.618,
1562
+ "eval_steps_per_second": 4.945,
1563
+ "step": 1653
1564
+ },
1565
+ {
1566
+ "epoch": 148.0,
1567
+ "eval_accuracy": 0.9371069182389937,
1568
+ "eval_loss": 0.22154641151428223,
1569
+ "eval_runtime": 2.0286,
1570
+ "eval_samples_per_second": 78.378,
1571
+ "eval_steps_per_second": 4.929,
1572
+ "step": 1665
1573
+ },
1574
+ {
1575
+ "epoch": 148.98,
1576
+ "eval_accuracy": 0.9182389937106918,
1577
+ "eval_loss": 0.21356013417243958,
1578
+ "eval_runtime": 1.9745,
1579
+ "eval_samples_per_second": 80.526,
1580
+ "eval_steps_per_second": 5.065,
1581
+ "step": 1676
1582
+ },
1583
+ {
1584
+ "epoch": 149.96,
1585
+ "eval_accuracy": 0.9433962264150944,
1586
+ "eval_loss": 0.20560431480407715,
1587
+ "eval_runtime": 2.0343,
1588
+ "eval_samples_per_second": 78.161,
1589
+ "eval_steps_per_second": 4.916,
1590
+ "step": 1687
1591
+ },
1592
+ {
1593
+ "epoch": 150.93,
1594
+ "eval_accuracy": 0.9371069182389937,
1595
+ "eval_loss": 0.20028233528137207,
1596
+ "eval_runtime": 2.0476,
1597
+ "eval_samples_per_second": 77.65,
1598
+ "eval_steps_per_second": 4.884,
1599
+ "step": 1698
1600
+ },
1601
+ {
1602
+ "epoch": 151.11,
1603
+ "grad_norm": 0.6037131547927856,
1604
+ "learning_rate": 2.6893939393939398e-05,
1605
+ "loss": 0.0676,
1606
+ "step": 1700
1607
+ },
1608
+ {
1609
+ "epoch": 152.0,
1610
+ "eval_accuracy": 0.9308176100628931,
1611
+ "eval_loss": 0.22495229542255402,
1612
+ "eval_runtime": 2.0653,
1613
+ "eval_samples_per_second": 76.985,
1614
+ "eval_steps_per_second": 4.842,
1615
+ "step": 1710
1616
+ },
1617
+ {
1618
+ "epoch": 152.98,
1619
+ "eval_accuracy": 0.9559748427672956,
1620
+ "eval_loss": 0.1910940259695053,
1621
+ "eval_runtime": 2.2097,
1622
+ "eval_samples_per_second": 71.955,
1623
+ "eval_steps_per_second": 4.525,
1624
+ "step": 1721
1625
+ },
1626
+ {
1627
+ "epoch": 153.96,
1628
+ "eval_accuracy": 0.9245283018867925,
1629
+ "eval_loss": 0.2189728170633316,
1630
+ "eval_runtime": 2.049,
1631
+ "eval_samples_per_second": 77.598,
1632
+ "eval_steps_per_second": 4.88,
1633
+ "step": 1732
1634
+ },
1635
+ {
1636
+ "epoch": 154.93,
1637
+ "eval_accuracy": 0.9308176100628931,
1638
+ "eval_loss": 0.1975589245557785,
1639
+ "eval_runtime": 2.0536,
1640
+ "eval_samples_per_second": 77.426,
1641
+ "eval_steps_per_second": 4.87,
1642
+ "step": 1743
1643
+ },
1644
+ {
1645
+ "epoch": 155.56,
1646
+ "grad_norm": 0.9841188788414001,
1647
+ "learning_rate": 2.6704545454545453e-05,
1648
+ "loss": 0.0674,
1649
+ "step": 1750
1650
+ },
1651
+ {
1652
+ "epoch": 156.0,
1653
+ "eval_accuracy": 0.949685534591195,
1654
+ "eval_loss": 0.18743836879730225,
1655
+ "eval_runtime": 2.0593,
1656
+ "eval_samples_per_second": 77.211,
1657
+ "eval_steps_per_second": 4.856,
1658
+ "step": 1755
1659
+ },
1660
+ {
1661
+ "epoch": 156.98,
1662
+ "eval_accuracy": 0.9371069182389937,
1663
+ "eval_loss": 0.2022770792245865,
1664
+ "eval_runtime": 2.0432,
1665
+ "eval_samples_per_second": 77.821,
1666
+ "eval_steps_per_second": 4.894,
1667
+ "step": 1766
1668
+ },
1669
+ {
1670
+ "epoch": 157.96,
1671
+ "eval_accuracy": 0.949685534591195,
1672
+ "eval_loss": 0.21527531743049622,
1673
+ "eval_runtime": 1.9951,
1674
+ "eval_samples_per_second": 79.694,
1675
+ "eval_steps_per_second": 5.012,
1676
+ "step": 1777
1677
+ },
1678
+ {
1679
+ "epoch": 158.93,
1680
+ "eval_accuracy": 0.9433962264150944,
1681
+ "eval_loss": 0.22451625764369965,
1682
+ "eval_runtime": 2.1442,
1683
+ "eval_samples_per_second": 74.155,
1684
+ "eval_steps_per_second": 4.664,
1685
+ "step": 1788
1686
+ },
1687
+ {
1688
+ "epoch": 160.0,
1689
+ "grad_norm": 0.5377254486083984,
1690
+ "learning_rate": 2.6515151515151516e-05,
1691
+ "loss": 0.0548,
1692
+ "step": 1800
1693
+ },
1694
+ {
1695
+ "epoch": 160.0,
1696
+ "eval_accuracy": 0.9245283018867925,
1697
+ "eval_loss": 0.2431740015745163,
1698
+ "eval_runtime": 2.2699,
1699
+ "eval_samples_per_second": 70.046,
1700
+ "eval_steps_per_second": 4.405,
1701
+ "step": 1800
1702
+ },
1703
+ {
1704
+ "epoch": 160.98,
1705
+ "eval_accuracy": 0.9433962264150944,
1706
+ "eval_loss": 0.2071038782596588,
1707
+ "eval_runtime": 2.0506,
1708
+ "eval_samples_per_second": 77.538,
1709
+ "eval_steps_per_second": 4.877,
1710
+ "step": 1811
1711
+ },
1712
+ {
1713
+ "epoch": 161.96,
1714
+ "eval_accuracy": 0.949685534591195,
1715
+ "eval_loss": 0.18368059396743774,
1716
+ "eval_runtime": 2.2081,
1717
+ "eval_samples_per_second": 72.006,
1718
+ "eval_steps_per_second": 4.529,
1719
+ "step": 1822
1720
+ },
1721
+ {
1722
+ "epoch": 162.93,
1723
+ "eval_accuracy": 0.949685534591195,
1724
+ "eval_loss": 0.19161438941955566,
1725
+ "eval_runtime": 1.9999,
1726
+ "eval_samples_per_second": 79.505,
1727
+ "eval_steps_per_second": 5.0,
1728
+ "step": 1833
1729
+ },
1730
+ {
1731
+ "epoch": 164.0,
1732
+ "eval_accuracy": 0.949685534591195,
1733
+ "eval_loss": 0.22212089598178864,
1734
+ "eval_runtime": 2.0001,
1735
+ "eval_samples_per_second": 79.497,
1736
+ "eval_steps_per_second": 5.0,
1737
+ "step": 1845
1738
+ },
1739
+ {
1740
+ "epoch": 164.44,
1741
+ "grad_norm": 0.5433365702629089,
1742
+ "learning_rate": 2.6325757575757575e-05,
1743
+ "loss": 0.0616,
1744
+ "step": 1850
1745
+ },
1746
+ {
1747
+ "epoch": 164.98,
1748
+ "eval_accuracy": 0.949685534591195,
1749
+ "eval_loss": 0.21204246580600739,
1750
+ "eval_runtime": 2.035,
1751
+ "eval_samples_per_second": 78.132,
1752
+ "eval_steps_per_second": 4.914,
1753
+ "step": 1856
1754
+ },
1755
+ {
1756
+ "epoch": 165.96,
1757
+ "eval_accuracy": 0.9559748427672956,
1758
+ "eval_loss": 0.18882697820663452,
1759
+ "eval_runtime": 2.0581,
1760
+ "eval_samples_per_second": 77.256,
1761
+ "eval_steps_per_second": 4.859,
1762
+ "step": 1867
1763
+ },
1764
+ {
1765
+ "epoch": 166.93,
1766
+ "eval_accuracy": 0.949685534591195,
1767
+ "eval_loss": 0.19714578986167908,
1768
+ "eval_runtime": 2.002,
1769
+ "eval_samples_per_second": 79.422,
1770
+ "eval_steps_per_second": 4.995,
1771
+ "step": 1878
1772
+ },
1773
+ {
1774
+ "epoch": 168.0,
1775
+ "eval_accuracy": 0.9433962264150944,
1776
+ "eval_loss": 0.21613995730876923,
1777
+ "eval_runtime": 2.0979,
1778
+ "eval_samples_per_second": 75.789,
1779
+ "eval_steps_per_second": 4.767,
1780
+ "step": 1890
1781
+ },
1782
+ {
1783
+ "epoch": 168.89,
1784
+ "grad_norm": 0.4616011083126068,
1785
+ "learning_rate": 2.6136363636363637e-05,
1786
+ "loss": 0.0467,
1787
+ "step": 1900
1788
+ },
1789
+ {
1790
+ "epoch": 168.98,
1791
+ "eval_accuracy": 0.9371069182389937,
1792
+ "eval_loss": 0.22824302315711975,
1793
+ "eval_runtime": 2.0023,
1794
+ "eval_samples_per_second": 79.407,
1795
+ "eval_steps_per_second": 4.994,
1796
+ "step": 1901
1797
+ },
1798
+ {
1799
+ "epoch": 169.96,
1800
+ "eval_accuracy": 0.9056603773584906,
1801
+ "eval_loss": 0.31181007623672485,
1802
+ "eval_runtime": 2.2272,
1803
+ "eval_samples_per_second": 71.39,
1804
+ "eval_steps_per_second": 4.49,
1805
+ "step": 1912
1806
+ },
1807
+ {
1808
+ "epoch": 170.93,
1809
+ "eval_accuracy": 0.949685534591195,
1810
+ "eval_loss": 0.23191651701927185,
1811
+ "eval_runtime": 2.0759,
1812
+ "eval_samples_per_second": 76.592,
1813
+ "eval_steps_per_second": 4.817,
1814
+ "step": 1923
1815
+ },
1816
+ {
1817
+ "epoch": 172.0,
1818
+ "eval_accuracy": 0.9308176100628931,
1819
+ "eval_loss": 0.27404358983039856,
1820
+ "eval_runtime": 2.0769,
1821
+ "eval_samples_per_second": 76.555,
1822
+ "eval_steps_per_second": 4.815,
1823
+ "step": 1935
1824
+ },
1825
+ {
1826
+ "epoch": 172.98,
1827
+ "eval_accuracy": 0.9308176100628931,
1828
+ "eval_loss": 0.2666384279727936,
1829
+ "eval_runtime": 2.1046,
1830
+ "eval_samples_per_second": 75.548,
1831
+ "eval_steps_per_second": 4.751,
1832
+ "step": 1946
1833
+ },
1834
+ {
1835
+ "epoch": 173.33,
1836
+ "grad_norm": 1.0961925983428955,
1837
+ "learning_rate": 2.59469696969697e-05,
1838
+ "loss": 0.0609,
1839
+ "step": 1950
1840
+ },
1841
+ {
1842
+ "epoch": 173.96,
1843
+ "eval_accuracy": 0.9433962264150944,
1844
+ "eval_loss": 0.23152852058410645,
1845
+ "eval_runtime": 2.0323,
1846
+ "eval_samples_per_second": 78.237,
1847
+ "eval_steps_per_second": 4.921,
1848
+ "step": 1957
1849
+ },
1850
+ {
1851
+ "epoch": 174.93,
1852
+ "eval_accuracy": 0.9371069182389937,
1853
+ "eval_loss": 0.22292692959308624,
1854
+ "eval_runtime": 2.0749,
1855
+ "eval_samples_per_second": 76.629,
1856
+ "eval_steps_per_second": 4.819,
1857
+ "step": 1968
1858
+ },
1859
+ {
1860
+ "epoch": 176.0,
1861
+ "eval_accuracy": 0.9433962264150944,
1862
+ "eval_loss": 0.21578945219516754,
1863
+ "eval_runtime": 2.0472,
1864
+ "eval_samples_per_second": 77.668,
1865
+ "eval_steps_per_second": 4.885,
1866
+ "step": 1980
1867
+ },
1868
+ {
1869
+ "epoch": 176.98,
1870
+ "eval_accuracy": 0.9433962264150944,
1871
+ "eval_loss": 0.22257991135120392,
1872
+ "eval_runtime": 2.1698,
1873
+ "eval_samples_per_second": 73.278,
1874
+ "eval_steps_per_second": 4.609,
1875
+ "step": 1991
1876
+ },
1877
+ {
1878
+ "epoch": 177.78,
1879
+ "grad_norm": 1.6022953987121582,
1880
+ "learning_rate": 2.575757575757576e-05,
1881
+ "loss": 0.0522,
1882
+ "step": 2000
1883
+ },
1884
+ {
1885
+ "epoch": 177.96,
1886
+ "eval_accuracy": 0.9308176100628931,
1887
+ "eval_loss": 0.22241446375846863,
1888
+ "eval_runtime": 2.0341,
1889
+ "eval_samples_per_second": 78.167,
1890
+ "eval_steps_per_second": 4.916,
1891
+ "step": 2002
1892
+ },
1893
+ {
1894
+ "epoch": 178.93,
1895
+ "eval_accuracy": 0.9433962264150944,
1896
+ "eval_loss": 0.21375904977321625,
1897
+ "eval_runtime": 2.1094,
1898
+ "eval_samples_per_second": 75.377,
1899
+ "eval_steps_per_second": 4.741,
1900
+ "step": 2013
1901
+ },
1902
+ {
1903
+ "epoch": 180.0,
1904
+ "eval_accuracy": 0.9371069182389937,
1905
+ "eval_loss": 0.21769364178180695,
1906
+ "eval_runtime": 1.9898,
1907
+ "eval_samples_per_second": 79.909,
1908
+ "eval_steps_per_second": 5.026,
1909
+ "step": 2025
1910
+ },
1911
+ {
1912
+ "epoch": 180.98,
1913
+ "eval_accuracy": 0.9433962264150944,
1914
+ "eval_loss": 0.19169649481773376,
1915
+ "eval_runtime": 2.1326,
1916
+ "eval_samples_per_second": 74.558,
1917
+ "eval_steps_per_second": 4.689,
1918
+ "step": 2036
1919
+ },
1920
+ {
1921
+ "epoch": 181.96,
1922
+ "eval_accuracy": 0.9559748427672956,
1923
+ "eval_loss": 0.19741381704807281,
1924
+ "eval_runtime": 2.1931,
1925
+ "eval_samples_per_second": 72.5,
1926
+ "eval_steps_per_second": 4.56,
1927
+ "step": 2047
1928
+ },
1929
+ {
1930
+ "epoch": 182.22,
1931
+ "grad_norm": 0.7399430274963379,
1932
+ "learning_rate": 2.556818181818182e-05,
1933
+ "loss": 0.0515,
1934
+ "step": 2050
1935
+ },
1936
+ {
1937
+ "epoch": 182.93,
1938
+ "eval_accuracy": 0.949685534591195,
1939
+ "eval_loss": 0.21981187164783478,
1940
+ "eval_runtime": 2.0417,
1941
+ "eval_samples_per_second": 77.878,
1942
+ "eval_steps_per_second": 4.898,
1943
+ "step": 2058
1944
+ },
1945
+ {
1946
+ "epoch": 184.0,
1947
+ "eval_accuracy": 0.9245283018867925,
1948
+ "eval_loss": 0.24247391521930695,
1949
+ "eval_runtime": 2.1999,
1950
+ "eval_samples_per_second": 72.278,
1951
+ "eval_steps_per_second": 4.546,
1952
+ "step": 2070
1953
+ },
1954
+ {
1955
+ "epoch": 184.98,
1956
+ "eval_accuracy": 0.9308176100628931,
1957
+ "eval_loss": 0.24488882720470428,
1958
+ "eval_runtime": 2.0767,
1959
+ "eval_samples_per_second": 76.565,
1960
+ "eval_steps_per_second": 4.815,
1961
+ "step": 2081
1962
+ },
1963
+ {
1964
+ "epoch": 185.96,
1965
+ "eval_accuracy": 0.9308176100628931,
1966
+ "eval_loss": 0.23463451862335205,
1967
+ "eval_runtime": 2.0674,
1968
+ "eval_samples_per_second": 76.907,
1969
+ "eval_steps_per_second": 4.837,
1970
+ "step": 2092
1971
+ },
1972
+ {
1973
+ "epoch": 186.67,
1974
+ "grad_norm": 0.67291659116745,
1975
+ "learning_rate": 2.5378787878787876e-05,
1976
+ "loss": 0.045,
1977
+ "step": 2100
1978
+ },
1979
+ {
1980
+ "epoch": 186.93,
1981
+ "eval_accuracy": 0.9433962264150944,
1982
+ "eval_loss": 0.23308323323726654,
1983
+ "eval_runtime": 2.2603,
1984
+ "eval_samples_per_second": 70.346,
1985
+ "eval_steps_per_second": 4.424,
1986
+ "step": 2103
1987
+ },
1988
+ {
1989
+ "epoch": 188.0,
1990
+ "eval_accuracy": 0.9371069182389937,
1991
+ "eval_loss": 0.2660614252090454,
1992
+ "eval_runtime": 2.0509,
1993
+ "eval_samples_per_second": 77.527,
1994
+ "eval_steps_per_second": 4.876,
1995
+ "step": 2115
1996
+ },
1997
+ {
1998
+ "epoch": 188.98,
1999
+ "eval_accuracy": 0.9371069182389937,
2000
+ "eval_loss": 0.22910529375076294,
2001
+ "eval_runtime": 2.0536,
2002
+ "eval_samples_per_second": 77.423,
2003
+ "eval_steps_per_second": 4.869,
2004
+ "step": 2126
2005
+ },
2006
+ {
2007
+ "epoch": 189.96,
2008
+ "eval_accuracy": 0.9371069182389937,
2009
+ "eval_loss": 0.23477251827716827,
2010
+ "eval_runtime": 2.0092,
2011
+ "eval_samples_per_second": 79.134,
2012
+ "eval_steps_per_second": 4.977,
2013
+ "step": 2137
2014
+ },
2015
+ {
2016
+ "epoch": 190.93,
2017
+ "eval_accuracy": 0.9433962264150944,
2018
+ "eval_loss": 0.23087622225284576,
2019
+ "eval_runtime": 2.0403,
2020
+ "eval_samples_per_second": 77.929,
2021
+ "eval_steps_per_second": 4.901,
2022
+ "step": 2148
2023
+ },
2024
+ {
2025
+ "epoch": 191.11,
2026
+ "grad_norm": 0.11660194396972656,
2027
+ "learning_rate": 2.518939393939394e-05,
2028
+ "loss": 0.0403,
2029
+ "step": 2150
2030
+ },
2031
+ {
2032
+ "epoch": 192.0,
2033
+ "eval_accuracy": 0.9245283018867925,
2034
+ "eval_loss": 0.27889564633369446,
2035
+ "eval_runtime": 2.0147,
2036
+ "eval_samples_per_second": 78.921,
2037
+ "eval_steps_per_second": 4.964,
2038
+ "step": 2160
2039
+ },
2040
+ {
2041
+ "epoch": 192.98,
2042
+ "eval_accuracy": 0.9308176100628931,
2043
+ "eval_loss": 0.2540048658847809,
2044
+ "eval_runtime": 2.1082,
2045
+ "eval_samples_per_second": 75.42,
2046
+ "eval_steps_per_second": 4.743,
2047
+ "step": 2171
2048
+ },
2049
+ {
2050
+ "epoch": 193.96,
2051
+ "eval_accuracy": 0.9371069182389937,
2052
+ "eval_loss": 0.23720349371433258,
2053
+ "eval_runtime": 2.1791,
2054
+ "eval_samples_per_second": 72.966,
2055
+ "eval_steps_per_second": 4.589,
2056
+ "step": 2182
2057
+ },
2058
+ {
2059
+ "epoch": 194.93,
2060
+ "eval_accuracy": 0.9308176100628931,
2061
+ "eval_loss": 0.2507873773574829,
2062
+ "eval_runtime": 1.986,
2063
+ "eval_samples_per_second": 80.061,
2064
+ "eval_steps_per_second": 5.035,
2065
+ "step": 2193
2066
+ },
2067
+ {
2068
+ "epoch": 195.56,
2069
+ "grad_norm": 0.8518453240394592,
2070
+ "learning_rate": 2.5e-05,
2071
+ "loss": 0.0476,
2072
+ "step": 2200
2073
+ },
2074
+ {
2075
+ "epoch": 196.0,
2076
+ "eval_accuracy": 0.949685534591195,
2077
+ "eval_loss": 0.2193620353937149,
2078
+ "eval_runtime": 2.1819,
2079
+ "eval_samples_per_second": 72.874,
2080
+ "eval_steps_per_second": 4.583,
2081
+ "step": 2205
2082
+ },
2083
+ {
2084
+ "epoch": 196.98,
2085
+ "eval_accuracy": 0.9371069182389937,
2086
+ "eval_loss": 0.23066306114196777,
2087
+ "eval_runtime": 2.0482,
2088
+ "eval_samples_per_second": 77.628,
2089
+ "eval_steps_per_second": 4.882,
2090
+ "step": 2216
2091
+ },
2092
+ {
2093
+ "epoch": 197.96,
2094
+ "eval_accuracy": 0.9308176100628931,
2095
+ "eval_loss": 0.2719472646713257,
2096
+ "eval_runtime": 1.9901,
2097
+ "eval_samples_per_second": 79.896,
2098
+ "eval_steps_per_second": 5.025,
2099
+ "step": 2227
2100
+ },
2101
+ {
2102
+ "epoch": 198.93,
2103
+ "eval_accuracy": 0.9245283018867925,
2104
+ "eval_loss": 0.28040099143981934,
2105
+ "eval_runtime": 2.0617,
2106
+ "eval_samples_per_second": 77.122,
2107
+ "eval_steps_per_second": 4.85,
2108
+ "step": 2238
2109
+ },
2110
+ {
2111
+ "epoch": 200.0,
2112
+ "grad_norm": 0.09039253741502762,
2113
+ "learning_rate": 2.481060606060606e-05,
2114
+ "loss": 0.0457,
2115
+ "step": 2250
2116
+ },
2117
+ {
2118
+ "epoch": 200.0,
2119
+ "eval_accuracy": 0.9308176100628931,
2120
+ "eval_loss": 0.2755438983440399,
2121
+ "eval_runtime": 2.0773,
2122
+ "eval_samples_per_second": 76.541,
2123
+ "eval_steps_per_second": 4.814,
2124
+ "step": 2250
2125
+ },
2126
+ {
2127
+ "epoch": 200.98,
2128
+ "eval_accuracy": 0.9308176100628931,
2129
+ "eval_loss": 0.2353052794933319,
2130
+ "eval_runtime": 1.9899,
2131
+ "eval_samples_per_second": 79.904,
2132
+ "eval_steps_per_second": 5.025,
2133
+ "step": 2261
2134
+ },
2135
+ {
2136
+ "epoch": 201.96,
2137
+ "eval_accuracy": 0.9371069182389937,
2138
+ "eval_loss": 0.21893078088760376,
2139
+ "eval_runtime": 2.1045,
2140
+ "eval_samples_per_second": 75.552,
2141
+ "eval_steps_per_second": 4.752,
2142
+ "step": 2272
2143
+ },
2144
+ {
2145
+ "epoch": 202.93,
2146
+ "eval_accuracy": 0.9371069182389937,
2147
+ "eval_loss": 0.21625204384326935,
2148
+ "eval_runtime": 2.0731,
2149
+ "eval_samples_per_second": 76.697,
2150
+ "eval_steps_per_second": 4.824,
2151
+ "step": 2283
2152
+ },
2153
+ {
2154
+ "epoch": 204.0,
2155
+ "eval_accuracy": 0.949685534591195,
2156
+ "eval_loss": 0.2110479772090912,
2157
+ "eval_runtime": 2.1463,
2158
+ "eval_samples_per_second": 74.079,
2159
+ "eval_steps_per_second": 4.659,
2160
+ "step": 2295
2161
+ },
2162
+ {
2163
+ "epoch": 204.44,
2164
+ "grad_norm": 0.9943685531616211,
2165
+ "learning_rate": 2.4621212121212123e-05,
2166
+ "loss": 0.0393,
2167
+ "step": 2300
2168
+ },
2169
+ {
2170
+ "epoch": 204.98,
2171
+ "eval_accuracy": 0.9433962264150944,
2172
+ "eval_loss": 0.23164410889148712,
2173
+ "eval_runtime": 2.0606,
2174
+ "eval_samples_per_second": 77.162,
2175
+ "eval_steps_per_second": 4.853,
2176
+ "step": 2306
2177
+ },
2178
+ {
2179
+ "epoch": 205.96,
2180
+ "eval_accuracy": 0.9308176100628931,
2181
+ "eval_loss": 0.24650876224040985,
2182
+ "eval_runtime": 2.0011,
2183
+ "eval_samples_per_second": 79.455,
2184
+ "eval_steps_per_second": 4.997,
2185
+ "step": 2317
2186
+ },
2187
+ {
2188
+ "epoch": 206.93,
2189
+ "eval_accuracy": 0.9433962264150944,
2190
+ "eval_loss": 0.23763243854045868,
2191
+ "eval_runtime": 2.0999,
2192
+ "eval_samples_per_second": 75.719,
2193
+ "eval_steps_per_second": 4.762,
2194
+ "step": 2328
2195
+ },
2196
+ {
2197
+ "epoch": 208.0,
2198
+ "eval_accuracy": 0.9433962264150944,
2199
+ "eval_loss": 0.2170635461807251,
2200
+ "eval_runtime": 2.1575,
2201
+ "eval_samples_per_second": 73.697,
2202
+ "eval_steps_per_second": 4.635,
2203
+ "step": 2340
2204
+ },
2205
+ {
2206
+ "epoch": 208.89,
2207
+ "grad_norm": 0.46173095703125,
2208
+ "learning_rate": 2.4431818181818185e-05,
2209
+ "loss": 0.0443,
2210
+ "step": 2350
2211
+ },
2212
+ {
2213
+ "epoch": 208.98,
2214
+ "eval_accuracy": 0.949685534591195,
2215
+ "eval_loss": 0.23952844738960266,
2216
+ "eval_runtime": 2.0014,
2217
+ "eval_samples_per_second": 79.445,
2218
+ "eval_steps_per_second": 4.997,
2219
+ "step": 2351
2220
+ },
2221
+ {
2222
+ "epoch": 209.96,
2223
+ "eval_accuracy": 0.8930817610062893,
2224
+ "eval_loss": 0.2906019687652588,
2225
+ "eval_runtime": 2.0133,
2226
+ "eval_samples_per_second": 78.977,
2227
+ "eval_steps_per_second": 4.967,
2228
+ "step": 2362
2229
+ },
2230
+ {
2231
+ "epoch": 210.93,
2232
+ "eval_accuracy": 0.9371069182389937,
2233
+ "eval_loss": 0.2608316242694855,
2234
+ "eval_runtime": 2.1558,
2235
+ "eval_samples_per_second": 73.755,
2236
+ "eval_steps_per_second": 4.639,
2237
+ "step": 2373
2238
+ },
2239
+ {
2240
+ "epoch": 212.0,
2241
+ "eval_accuracy": 0.949685534591195,
2242
+ "eval_loss": 0.23210321366786957,
2243
+ "eval_runtime": 2.0606,
2244
+ "eval_samples_per_second": 77.161,
2245
+ "eval_steps_per_second": 4.853,
2246
+ "step": 2385
2247
+ },
2248
+ {
2249
+ "epoch": 212.98,
2250
+ "eval_accuracy": 0.9371069182389937,
2251
+ "eval_loss": 0.24640053510665894,
2252
+ "eval_runtime": 2.2148,
2253
+ "eval_samples_per_second": 71.79,
2254
+ "eval_steps_per_second": 4.515,
2255
+ "step": 2396
2256
+ },
2257
+ {
2258
+ "epoch": 213.33,
2259
+ "grad_norm": 0.94215327501297,
2260
+ "learning_rate": 2.4242424242424244e-05,
2261
+ "loss": 0.0539,
2262
+ "step": 2400
2263
+ },
2264
+ {
2265
+ "epoch": 213.96,
2266
+ "eval_accuracy": 0.9182389937106918,
2267
+ "eval_loss": 0.2441636025905609,
2268
+ "eval_runtime": 2.172,
2269
+ "eval_samples_per_second": 73.203,
2270
+ "eval_steps_per_second": 4.604,
2271
+ "step": 2407
2272
+ },
2273
+ {
2274
+ "epoch": 214.93,
2275
+ "eval_accuracy": 0.9245283018867925,
2276
+ "eval_loss": 0.2511676847934723,
2277
+ "eval_runtime": 2.0176,
2278
+ "eval_samples_per_second": 78.806,
2279
+ "eval_steps_per_second": 4.956,
2280
+ "step": 2418
2281
+ },
2282
+ {
2283
+ "epoch": 216.0,
2284
+ "eval_accuracy": 0.9371069182389937,
2285
+ "eval_loss": 0.22649481892585754,
2286
+ "eval_runtime": 2.0103,
2287
+ "eval_samples_per_second": 79.091,
2288
+ "eval_steps_per_second": 4.974,
2289
+ "step": 2430
2290
+ },
2291
+ {
2292
+ "epoch": 216.98,
2293
+ "eval_accuracy": 0.9371069182389937,
2294
+ "eval_loss": 0.21274729073047638,
2295
+ "eval_runtime": 2.0508,
2296
+ "eval_samples_per_second": 77.529,
2297
+ "eval_steps_per_second": 4.876,
2298
+ "step": 2441
2299
+ },
2300
+ {
2301
+ "epoch": 217.78,
2302
+ "grad_norm": 0.7381362318992615,
2303
+ "learning_rate": 2.4053030303030303e-05,
2304
+ "loss": 0.0415,
2305
+ "step": 2450
2306
+ },
2307
+ {
2308
+ "epoch": 217.96,
2309
+ "eval_accuracy": 0.9371069182389937,
2310
+ "eval_loss": 0.284365177154541,
2311
+ "eval_runtime": 2.0321,
2312
+ "eval_samples_per_second": 78.244,
2313
+ "eval_steps_per_second": 4.921,
2314
+ "step": 2452
2315
+ },
2316
+ {
2317
+ "epoch": 218.93,
2318
+ "eval_accuracy": 0.9433962264150944,
2319
+ "eval_loss": 0.24891048669815063,
2320
+ "eval_runtime": 2.0843,
2321
+ "eval_samples_per_second": 76.285,
2322
+ "eval_steps_per_second": 4.798,
2323
+ "step": 2463
2324
+ },
2325
+ {
2326
+ "epoch": 220.0,
2327
+ "eval_accuracy": 0.949685534591195,
2328
+ "eval_loss": 0.21200108528137207,
2329
+ "eval_runtime": 1.9938,
2330
+ "eval_samples_per_second": 79.748,
2331
+ "eval_steps_per_second": 5.016,
2332
+ "step": 2475
2333
+ },
2334
+ {
2335
+ "epoch": 220.98,
2336
+ "eval_accuracy": 0.9559748427672956,
2337
+ "eval_loss": 0.2015109807252884,
2338
+ "eval_runtime": 2.2098,
2339
+ "eval_samples_per_second": 71.951,
2340
+ "eval_steps_per_second": 4.525,
2341
+ "step": 2486
2342
+ },
2343
+ {
2344
+ "epoch": 221.96,
2345
+ "eval_accuracy": 0.9245283018867925,
2346
+ "eval_loss": 0.25095799565315247,
2347
+ "eval_runtime": 2.0817,
2348
+ "eval_samples_per_second": 76.381,
2349
+ "eval_steps_per_second": 4.804,
2350
+ "step": 2497
2351
+ },
2352
+ {
2353
+ "epoch": 222.22,
2354
+ "grad_norm": 0.3756774961948395,
2355
+ "learning_rate": 2.3863636363636362e-05,
2356
+ "loss": 0.0325,
2357
+ "step": 2500
2358
+ },
2359
+ {
2360
+ "epoch": 222.93,
2361
+ "eval_accuracy": 0.9371069182389937,
2362
+ "eval_loss": 0.2875436246395111,
2363
+ "eval_runtime": 2.0148,
2364
+ "eval_samples_per_second": 78.915,
2365
+ "eval_steps_per_second": 4.963,
2366
+ "step": 2508
2367
+ },
2368
+ {
2369
+ "epoch": 224.0,
2370
+ "eval_accuracy": 0.9622641509433962,
2371
+ "eval_loss": 0.19936275482177734,
2372
+ "eval_runtime": 2.0208,
2373
+ "eval_samples_per_second": 78.682,
2374
+ "eval_steps_per_second": 4.949,
2375
+ "step": 2520
2376
+ }
2377
+ ],
2378
+ "logging_steps": 50,
2379
+ "max_steps": 8800,
2380
+ "num_input_tokens_seen": 0,
2381
+ "num_train_epochs": 800,
2382
+ "save_steps": 500,
2383
+ "total_flos": 1.406670474295296e+18,
2384
+ "train_batch_size": 16,
2385
+ "trial_name": null,
2386
+ "trial_params": null
2387
+ }
checkpoint-2520/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5d4b8806b7469d1ed9eae59ee1d37cab8cefda3aafd96ccd335721fc2198f5
3
+ size 4984
checkpoint-8800/config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "anderloh/Huggingface-wav2vec-2Class-easy-train-test",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForSequenceClassification"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 128,
15
+ "codevector_dim": 128,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 256,
20
+ 256,
21
+ 256,
22
+ 256,
23
+ 256,
24
+ 256,
25
+ 256
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "sum",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.0,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "finetuning_task": "audio-classification",
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.0,
59
+ "hidden_dropout_prob": 0.0,
60
+ "hidden_size": 384,
61
+ "id2label": {
62
+ "0": "Classic",
63
+ "1": "Racecar"
64
+ },
65
+ "initializer_range": 0.02,
66
+ "intermediate_size": 1536,
67
+ "label2id": {
68
+ "Classic": "0",
69
+ "Racecar": "1"
70
+ },
71
+ "layer_norm_eps": 1e-05,
72
+ "layerdrop": 0.0,
73
+ "mask_feature_length": 10,
74
+ "mask_feature_min_masks": 0,
75
+ "mask_feature_prob": 0.0,
76
+ "mask_time_length": 10,
77
+ "mask_time_min_masks": 2,
78
+ "mask_time_prob": 0.65,
79
+ "model_type": "wav2vec2",
80
+ "num_adapter_layers": 3,
81
+ "num_attention_heads": 6,
82
+ "num_codevector_groups": 2,
83
+ "num_codevectors_per_group": 320,
84
+ "num_conv_pos_embedding_groups": 16,
85
+ "num_conv_pos_embeddings": 128,
86
+ "num_feat_extract_layers": 7,
87
+ "num_hidden_layers": 6,
88
+ "num_negatives": 100,
89
+ "output_hidden_size": 384,
90
+ "pad_token_id": 0,
91
+ "proj_codevector_dim": 128,
92
+ "tdnn_dilation": [
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 1,
97
+ 1
98
+ ],
99
+ "tdnn_dim": [
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 512,
104
+ 1500
105
+ ],
106
+ "tdnn_kernel": [
107
+ 5,
108
+ 3,
109
+ 3,
110
+ 1,
111
+ 1
112
+ ],
113
+ "torch_dtype": "float32",
114
+ "transformers_version": "4.39.0.dev0",
115
+ "use_weighted_layer_sum": false,
116
+ "vocab_size": 32,
117
+ "xvector_output_dim": 512
118
+ }
checkpoint-8800/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eef9150298e13844952aabd41770614829ed073d0a9f348d76b24df17074c920
3
+ size 52149800
checkpoint-8800/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38ed100248348a22bbe356bdb7ab0ec11e07281896386c8e5020aff7a513edb
3
+ size 95906874
checkpoint-8800/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
checkpoint-8800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15cf0b0684785889339f774b503f43b4b1480e74dbea20d8fdcd05b896f5e7fb
3
+ size 14244
checkpoint-8800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f0377c2c7e34286d824bf13fe88e5300e42b1edae7392199e4bf0dc0ba55519
3
+ size 1064
checkpoint-8800/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-8800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5d4b8806b7469d1ed9eae59ee1d37cab8cefda3aafd96ccd335721fc2198f5
3
+ size 4984
config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "anderloh/Huggingface-wav2vec-2Class-easy-train-test",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForSequenceClassification"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 128,
15
+ "codevector_dim": 128,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 256,
20
+ 256,
21
+ 256,
22
+ 256,
23
+ 256,
24
+ 256,
25
+ 256
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "sum",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.0,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "finetuning_task": "audio-classification",
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.0,
59
+ "hidden_dropout_prob": 0.0,
60
+ "hidden_size": 384,
61
+ "id2label": {
62
+ "0": "Classic",
63
+ "1": "Racecar"
64
+ },
65
+ "initializer_range": 0.02,
66
+ "intermediate_size": 1536,
67
+ "label2id": {
68
+ "Classic": "0",
69
+ "Racecar": "1"
70
+ },
71
+ "layer_norm_eps": 1e-05,
72
+ "layerdrop": 0.0,
73
+ "mask_feature_length": 10,
74
+ "mask_feature_min_masks": 0,
75
+ "mask_feature_prob": 0.0,
76
+ "mask_time_length": 10,
77
+ "mask_time_min_masks": 2,
78
+ "mask_time_prob": 0.65,
79
+ "model_type": "wav2vec2",
80
+ "num_adapter_layers": 3,
81
+ "num_attention_heads": 6,
82
+ "num_codevector_groups": 2,
83
+ "num_codevectors_per_group": 320,
84
+ "num_conv_pos_embedding_groups": 16,
85
+ "num_conv_pos_embeddings": 128,
86
+ "num_feat_extract_layers": 7,
87
+ "num_hidden_layers": 6,
88
+ "num_negatives": 100,
89
+ "output_hidden_size": 384,
90
+ "pad_token_id": 0,
91
+ "proj_codevector_dim": 128,
92
+ "tdnn_dilation": [
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 1,
97
+ 1
98
+ ],
99
+ "tdnn_dim": [
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 512,
104
+ 1500
105
+ ],
106
+ "tdnn_kernel": [
107
+ 5,
108
+ 3,
109
+ 3,
110
+ 1,
111
+ 1
112
+ ],
113
+ "torch_dtype": "float32",
114
+ "transformers_version": "4.39.0.dev0",
115
+ "use_weighted_layer_sum": false,
116
+ "vocab_size": 32,
117
+ "xvector_output_dim": 512
118
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 782.22,
3
+ "eval_accuracy": 0.9622641509433962,
4
+ "eval_loss": 0.19936275482177734,
5
+ "eval_runtime": 2.0221,
6
+ "eval_samples_per_second": 78.632,
7
+ "eval_steps_per_second": 4.945
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3099375b7d1fde7be7f4a0a0f66f570bca8fc5e9b16260b822168d829977b229
3
+ size 52149800
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
runs/May05_00-00-30_ml1.hpc.uio.no/events.out.tfevents.1714860068.ml1.hpc.uio.no.2787261.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d10ba29751d642668c87392aa7200a3dcb6bb53314761b5456d7499e8b31bfca
3
+ size 97299
runs/May05_00-00-30_ml1.hpc.uio.no/events.out.tfevents.1714861899.ml1.hpc.uio.no.2787261.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd746d71e04708177c4c3d5a8280b41cb44f27cfcb5e5b4120f0b286249d2d53
3
+ size 411
runs/May07_19-58-33_ml1.hpc.uio.no/events.out.tfevents.1715104725.ml1.hpc.uio.no.3712275.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac00485bcd39315de20a12410a267d2d1c8cfa739ff896dff209dadd934cf437
3
+ size 187716
runs/May07_19-58-33_ml1.hpc.uio.no/events.out.tfevents.1715108317.ml1.hpc.uio.no.3712275.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:131455410615d91c9fd424b10ed9837a3344c8d521a1f0a322c3c50c9c1c82d7
3
+ size 411
runs/May07_22-59-29_ml1.hpc.uio.no/events.out.tfevents.1715115582.ml1.hpc.uio.no.3784586.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ad72510d982067d82e3ada2f04dc8afad9aab0587e1fb8bc72640ffc2b5e5c7
3
+ size 296604
runs/May07_22-59-29_ml1.hpc.uio.no/events.out.tfevents.1715121379.ml1.hpc.uio.no.3784586.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b2f9af0915de946cb974d7e4c3aa49d75e2c8860cc6e63832549d880a1c5e7a
3
+ size 411
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 782.22,
3
+ "train_loss": 0.0709631282125007,
4
+ "train_runtime": 5794.2307,
5
+ "train_samples_per_second": 98.995,
6
+ "train_steps_per_second": 1.519
7
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5d4b8806b7469d1ed9eae59ee1d37cab8cefda3aafd96ccd335721fc2198f5
3
+ size 4984