Add model files
Browse files- .ipynb_checkpoints/README-checkpoint.md +144 -0
- .ipynb_checkpoints/preprocessor_config-checkpoint.json +8 -0
- .ipynb_checkpoints/special_tokens_map-checkpoint.json +1 -0
- .ipynb_checkpoints/tokenizer_config-checkpoint.json +1 -0
- .ipynb_checkpoints/vocab-checkpoint.json +1 -0
- README.md +2 -2
- config.json +1 -1
- pytorch_model.bin +1 -1
- vocab.json +1 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ar
|
3 |
+
datasets:
|
4 |
+
- common_voice: Common Voice Corpus 4
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: Hasni XLSR Wav2Vec2 Large 53
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice ar
|
21 |
+
type: common_voice
|
22 |
+
args: ar
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 52.18
|
27 |
+
---
|
28 |
+
|
29 |
+
# Wav2Vec2-Large-XLSR-53-Arabic
|
30 |
+
|
31 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice Corpus 4](https://commonvoice.mozilla.org/en/datasets) dataset.
|
32 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
The model can be used directly (without a language model) as follows:
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
import torchaudio
|
41 |
+
from datasets import load_dataset
|
42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
+
|
44 |
+
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
|
45 |
+
|
46 |
+
processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
|
47 |
+
model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
|
48 |
+
|
49 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
50 |
+
|
51 |
+
# Preprocessing the datasets.
|
52 |
+
# We need to read the aduio files as arrays
|
53 |
+
def speech_file_to_array_fn(batch):
|
54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
return batch
|
57 |
+
|
58 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
+
|
64 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
+
|
66 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
67 |
+
print("Reference:", test_dataset["sentence"][:2])
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
+
## Evaluation
|
72 |
+
|
73 |
+
The model can be evaluated as follows on the Arabic test data of Common Voice.
|
74 |
+
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
import torchaudio
|
79 |
+
from datasets import load_dataset, load_metric
|
80 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
+
import re
|
82 |
+
|
83 |
+
test_dataset = load_dataset("common_voice", "ar", split="test")
|
84 |
+
|
85 |
+
processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
|
86 |
+
model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
|
87 |
+
model.to("cuda")
|
88 |
+
|
89 |
+
chars_to_ignore_regex = '[\\\\,\\\\؟\\\\.\\\\!\\\\-\\\\;\\\\\\\\:\\\\'\\\\"\\\\☭\\\\«\\\\»\\\\؛\\\\—\\\\ـ\\\\_\\\\،\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
90 |
+
|
91 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
+
|
93 |
+
# Preprocessing the datasets.
|
94 |
+
# We need to read the aduio files as arrays
|
95 |
+
def speech_file_to_array_fn(batch):
|
96 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
+
batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
|
98 |
+
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
|
99 |
+
noise = re.compile(""" ّ | # Tashdid
|
100 |
+
َ | # Fatha
|
101 |
+
ً | # Tanwin Fath
|
102 |
+
ُ | # Damma
|
103 |
+
ٌ | # Tanwin Damm
|
104 |
+
ِ | # Kasra
|
105 |
+
ٍ | # Tanwin Kasr
|
106 |
+
ْ | # Sukun
|
107 |
+
ـ # Tatwil/Kashida
|
108 |
+
""", re.VERBOSE)
|
109 |
+
batch["sentence"] = re.sub(noise, '', batch["sentence"])
|
110 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
111 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
112 |
+
return batch
|
113 |
+
|
114 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
115 |
+
|
116 |
+
# Preprocessing the datasets.
|
117 |
+
# We need to read the aduio files as arrays
|
118 |
+
def evaluate(batch):
|
119 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
120 |
+
|
121 |
+
with torch.no_grad():
|
122 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
123 |
+
|
124 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
125 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
126 |
+
return batch
|
127 |
+
|
128 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
129 |
+
|
130 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
131 |
+
```
|
132 |
+
|
133 |
+
**Test Result**: 52.18 %
|
134 |
+
|
135 |
+
|
136 |
+
## Training
|
137 |
+
|
138 |
+
The Common Voice Corpus 4 `train`, `validation`, datasets were used for training
|
139 |
+
|
140 |
+
The script used for training can be found [here](...)
|
141 |
+
|
142 |
+
Twitter: [here](https://twitter.com/hasnii_anas)
|
143 |
+
|
144 |
+
Email: anashasni146@gmail.com
|
.ipynb_checkpoints/preprocessor_config-checkpoint.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
.ipynb_checkpoints/special_tokens_map-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
.ipynb_checkpoints/tokenizer_config-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
.ipynb_checkpoints/vocab-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"خ": 0, "ة": 1, "د": 2, "ا": 4, "ض": 5, "م": 6, "و": 7, "ك": 8, "ث": 9, "ش": 10, "ع": 11, "ز": 12, "ء": 13, "ی": 14, "ن": 15, "ه": 16, "ق": 17, "ت": 18, "ب": 19, "ف": 20, "ظ": 21, "ح": 22, "ص": 23, "ئ": 24, "ذ": 25, "ى": 26, "غ": 27, "س": 28, "ر": 29, "ط": 30, "ي": 31, "ل": 32, "ؤ": 33, "ج": 34, "|": 3, "[UNK]": 35, "[PAD]": 36}
|
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value:
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Arabic
|
@@ -130,7 +130,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
130 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
131 |
```
|
132 |
|
133 |
-
**Test Result**:
|
134 |
|
135 |
|
136 |
## Training
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 52.18
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Arabic
|
|
|
130 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
131 |
```
|
132 |
|
133 |
+
**Test Result**: 52.18 %
|
134 |
|
135 |
|
136 |
## Training
|
config.json
CHANGED
@@ -46,7 +46,7 @@
|
|
46 |
"final_dropout": 0.0,
|
47 |
"gradient_checkpointing": true,
|
48 |
"hidden_act": "gelu",
|
49 |
-
"hidden_dropout": 0.
|
50 |
"hidden_size": 1024,
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
|
|
46 |
"final_dropout": 0.0,
|
47 |
"gradient_checkpointing": true,
|
48 |
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.05,
|
50 |
"hidden_size": 1024,
|
51 |
"initializer_range": 0.02,
|
52 |
"intermediate_size": 4096,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262085527
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d92c7e4e59488cb3de5cb0336893c24517ea0da99be9f9cd6f77ada2ecbe0b
|
3 |
size 1262085527
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"خ": 0, "ة": 1, "د": 2, "ا": 4, "ض": 5, "م": 6, "و": 7, "ك": 8, "ث": 9, "ش": 10, "ع": 11, "ز": 12, "ء": 13, "ی": 14, "ن": 15, "ه": 16, "ق": 17, "ت": 18, "ب": 19, "ف": 20, "ظ": 21, "ح": 22, "ص": 23, "ئ": 24, "ذ": 25, "ى": 26, "غ": 27, "س": 28, "ر": 29, "ط": 30, "ي": 31, "ل": 32, "ؤ": 33, "ج": 34, "|": 3, "[UNK]": 35, "[PAD]": 36}
|