anamikac2708 commited on
Commit
c26830a
1 Parent(s): bbf1e3d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -26,19 +26,20 @@ This project is for research purposes only. Third-party datasets may be subject
26
  ## How to Get Started with the Model
27
 
28
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
29
- You need to merge the adapter with the base model and infer it using PEFT or Unsloth library.
30
  Please find an example below using Unsloth:
31
 
32
- ```
33
  import torch
34
  from unsloth import FastLanguageModel
35
  from transformers import AutoTokenizer, pipeline
36
  model_id='FinLang/investopedia_chat_model'
37
  max_seq_length=2048
38
  model, tokenizer = FastLanguageModel.from_pretrained(
39
- model_name = "anamikac2708/Llama3-8b-finetuned-investopedia-Merged-FP16", # YOUR MODEL YOU USED FOR TRAINING
40
  max_seq_length = max_seq_length,
41
- dtype = torch.bfloat16
 
42
  )
43
  tokenizer = AutoTokenizer.from_pretrained(model_id)
44
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
 
26
  ## How to Get Started with the Model
27
 
28
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
29
+ You can infer the adapters directly using Peft/Unsloth library or you can merge the adapter with the base model and can use it.
30
  Please find an example below using Unsloth:
31
 
32
+ ```python
33
  import torch
34
  from unsloth import FastLanguageModel
35
  from transformers import AutoTokenizer, pipeline
36
  model_id='FinLang/investopedia_chat_model'
37
  max_seq_length=2048
38
  model, tokenizer = FastLanguageModel.from_pretrained(
39
+ model_name = "anamikac2708/Llama3-8b-finetuned-investopedia-Lora-Adapters", # YOUR MODEL YOU USED FOR TRAINING
40
  max_seq_length = max_seq_length,
41
+ dtype = torch.bfloat16,
42
+ load_in_4bit = False #Make it True if you want to use bitsandbytes 4bit
43
  )
44
  tokenizer = AutoTokenizer.from_pretrained(model_id)
45
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)