Text-to-Speech
Safetensors
Hecheng0625 commited on
Commit
357e18b
·
verified ·
1 Parent(s): e3c5700

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - amphion/Emilia-Dataset
5
+ language:
6
+ - en
7
+ - zh
8
+ - ko
9
+ - ja
10
+ - fr
11
+ - de
12
+ base_model:
13
+ - amphion/MaskGCT
14
+ pipeline_tag: text-to-speech
15
+ ---
16
+ ## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer
17
+
18
+ [![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](../../../models/tts/maskgct/README.md)
19
+
20
+ ## Quickstart
21
+
22
+ **Clone and install**
23
+
24
+ ```bash
25
+ git clone https://github.com/open-mmlab/Amphion.git
26
+ # create env
27
+ bash ./models/tts/maskgct/env.sh
28
+ ```
29
+
30
+ **Model download**
31
+
32
+ We provide the following pretrained checkpoints:
33
+
34
+
35
+ | Model Name | Description |
36
+ |-------------------|-------------|
37
+ | [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. |
38
+ | [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
39
+ | [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. |
40
+ | [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. |
41
+
42
+ You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api.
43
+
44
+ ```python
45
+ from huggingface_hub import hf_hub_download
46
+
47
+ # download semantic codec ckpt
48
+ semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
49
+
50
+ # download acoustic codec ckpt
51
+ codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
52
+ codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
53
+
54
+ # download t2s model ckpt
55
+ t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
56
+
57
+ # download s2a model ckpt
58
+ s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
59
+ s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
60
+ ```
61
+
62
+ **Basic Usage**
63
+
64
+ You can use the following code to generate speech from text and a prompt speech.
65
+ ```python
66
+ from models.tts.maskgct.maskgct_utils import *
67
+ from huggingface_hub import hf_hub_download
68
+ import safetensors
69
+ import soundfile as sf
70
+
71
+ if __name__ == "__main__":
72
+
73
+ # build model
74
+ device = torch.device("cuda:0")
75
+ cfg_path = "./models/tts/maskgct/config/maskgct.json"
76
+ cfg = load_config(cfg_path)
77
+ # 1. build semantic model (w2v-bert-2.0)
78
+ semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
79
+ # 2. build semantic codec
80
+ semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
81
+ # 3. build acoustic codec
82
+ codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
83
+ # 4. build t2s model
84
+ t2s_model = build_t2s_model(cfg.model.t2s_model, device)
85
+ # 5. build s2a model
86
+ s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
87
+ s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
88
+
89
+ # download checkpoint
90
+ ...
91
+
92
+ # load semantic codec
93
+ safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
94
+ # load acoustic codec
95
+ safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
96
+ safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
97
+ # load t2s model
98
+ safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
99
+ # load s2a model
100
+ safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
101
+ safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
102
+
103
+ # inference
104
+ prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
105
+ save_path = "[YOUR SAVE PATH]"
106
+ prompt_text = " We do not break. We never give in. We never back down."
107
+ target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
108
+ # Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
109
+ target_len = 18
110
+ recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len)
111
+ sf.write(save_path, recovered_audio, 24000)
112
+ ```