Hecheng0625
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- amphion/Emilia-Dataset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
- ko
|
9 |
+
- ja
|
10 |
+
- fr
|
11 |
+
- de
|
12 |
+
base_model:
|
13 |
+
- amphion/MaskGCT
|
14 |
+
pipeline_tag: text-to-speech
|
15 |
+
---
|
16 |
+
## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer
|
17 |
+
|
18 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](../../../models/tts/maskgct/README.md)
|
19 |
+
|
20 |
+
## Quickstart
|
21 |
+
|
22 |
+
**Clone and install**
|
23 |
+
|
24 |
+
```bash
|
25 |
+
git clone https://github.com/open-mmlab/Amphion.git
|
26 |
+
# create env
|
27 |
+
bash ./models/tts/maskgct/env.sh
|
28 |
+
```
|
29 |
+
|
30 |
+
**Model download**
|
31 |
+
|
32 |
+
We provide the following pretrained checkpoints:
|
33 |
+
|
34 |
+
|
35 |
+
| Model Name | Description |
|
36 |
+
|-------------------|-------------|
|
37 |
+
| [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. |
|
38 |
+
| [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
|
39 |
+
| [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. |
|
40 |
+
| [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. |
|
41 |
+
|
42 |
+
You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api.
|
43 |
+
|
44 |
+
```python
|
45 |
+
from huggingface_hub import hf_hub_download
|
46 |
+
|
47 |
+
# download semantic codec ckpt
|
48 |
+
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
|
49 |
+
|
50 |
+
# download acoustic codec ckpt
|
51 |
+
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
|
52 |
+
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
|
53 |
+
|
54 |
+
# download t2s model ckpt
|
55 |
+
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
|
56 |
+
|
57 |
+
# download s2a model ckpt
|
58 |
+
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
|
59 |
+
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
|
60 |
+
```
|
61 |
+
|
62 |
+
**Basic Usage**
|
63 |
+
|
64 |
+
You can use the following code to generate speech from text and a prompt speech.
|
65 |
+
```python
|
66 |
+
from models.tts.maskgct.maskgct_utils import *
|
67 |
+
from huggingface_hub import hf_hub_download
|
68 |
+
import safetensors
|
69 |
+
import soundfile as sf
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
|
73 |
+
# build model
|
74 |
+
device = torch.device("cuda:0")
|
75 |
+
cfg_path = "./models/tts/maskgct/config/maskgct.json"
|
76 |
+
cfg = load_config(cfg_path)
|
77 |
+
# 1. build semantic model (w2v-bert-2.0)
|
78 |
+
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
|
79 |
+
# 2. build semantic codec
|
80 |
+
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
|
81 |
+
# 3. build acoustic codec
|
82 |
+
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
|
83 |
+
# 4. build t2s model
|
84 |
+
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
|
85 |
+
# 5. build s2a model
|
86 |
+
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
|
87 |
+
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
|
88 |
+
|
89 |
+
# download checkpoint
|
90 |
+
...
|
91 |
+
|
92 |
+
# load semantic codec
|
93 |
+
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
|
94 |
+
# load acoustic codec
|
95 |
+
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
|
96 |
+
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
|
97 |
+
# load t2s model
|
98 |
+
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
|
99 |
+
# load s2a model
|
100 |
+
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
|
101 |
+
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
|
102 |
+
|
103 |
+
# inference
|
104 |
+
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
|
105 |
+
save_path = "[YOUR SAVE PATH]"
|
106 |
+
prompt_text = " We do not break. We never give in. We never back down."
|
107 |
+
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
|
108 |
+
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
|
109 |
+
target_len = 18
|
110 |
+
recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len)
|
111 |
+
sf.write(save_path, recovered_audio, 24000)
|
112 |
+
```
|