ammr commited on
Commit
ce9a036
1 Parent(s): 18e4090

push LunarLander-v1 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 243.22 +/- 15.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff340f75160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff340f751f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff340f75280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff340f75310>", "_build": "<function ActorCriticPolicy._build at 0x7ff340f753a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff340f75430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff340f754c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff340f75550>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff340f755e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff340f75670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff340f75700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff340f75790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff340f6e810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1676052213642870355, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1AHb4H6aU+pBI8Pex2gr48XUw7JrXkPQAAAAAAAAAAzeumPK5Hk7pWpcW7bQutOKQdFbtjYVs6AACAPwAAgD/N4YU9TuS6PWtOJr70WRq+QdgkvVS5m7wAAAAAAAAAAM3kVDtcOwq6TCUjtRH8pi9Tsz27brhfNAAAgD8AAIA/7fY8vsELcT5zGIQ+RXXIvt8kmT0lBok9AAAAAAAAAACNuqQ+6+8vP2/hxL3m0YK+dsBTPcrZY70AAAAAAAAAAJqNyrusitA8LqsGvSe0Xr4h6SG9lbVFPAAAAAAAAAAATSGcvUgrmLpQg6O6UYCyNTOMHLqr3bw5AAAAAAAAgD+tLYW+TYI/PpNMeT5ZZ5K+2xkrPUiMkjwAAAAAAAAAAHpS1T4W9HI/7ocMvQJAyL7/m74+riIDvgAAAAAAAAAAgMTPvSmgPbrDpAK516i1s4h5Orr4Wxg4AACAPwAAAADm0mG9wXeLPz7J4b3rDoe+VvubvXH/IbwAAAAAAAAAAOaxPL1ce2O6lK2RNymUmzIt0Ls6PZ6qtgAAgD8AAIA/AMDeO66jl7oV8067S+9QN4jG5Tqy/K62AACAPwAAgD/Nk4689oxzuhjDj7kpLpC0D21sObcYqDgAAIA/AACAPwDktL2P1ni6MtN5uw0fmDj/Q4e5fXvXOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkdRCyeRfZkCUhpRSlIwBbJRN6AOMAXSUR0C9fZeX7cfvdX2UKGgGaAloD0MINuSfGcQXW0CUhpRSlGgVTegDaBZHQL2A1yfL9uR1fZQoaAZoCWgPQwi2hlJ7EZhqQJSGlFKUaBVNagJoFkdAvYEDjzZpSXV9lChoBmgJaA9DCE4qGmt/zmZAlIaUUpRoFU3oA2gWR0C9gegB91EFdX2UKGgGaAloD0MIeXjPgWXvZECUhpRSlGgVTegDaBZHQL2FV7Dl5nl1fZQoaAZoCWgPQwidSDDVTMBiQJSGlFKUaBVN6ANoFkdAvYcml3yI6HV9lChoBmgJaA9DCMr7OJojqGRAlIaUUpRoFU3oA2gWR0C9jw2y9mHydX2UKGgGaAloD0MIz04GR8mNYkCUhpRSlGgVTegDaBZHQL2QEf4REnd1fZQoaAZoCWgPQwgSE9TwLWhdQJSGlFKUaBVN6ANoFkdAvZFIi6g/T3V9lChoBmgJaA9DCAGKkSVzLF5AlIaUUpRoFU3oA2gWR0C9k6/fsNUgdX2UKGgGaAloD0MIrtUe9kJvYECUhpRSlGgVTegDaBZHQL2UMmeUY9B1fZQoaAZoCWgPQwjej9svnw1gQJSGlFKUaBVN6ANoFkdAvZSSpfhMrXV9lChoBmgJaA9DCKUyxRyEmGdAlIaUUpRoFU1AA2gWR0C9lLv5P/JedX2UKGgGaAloD0MIlKRrJl/3Y0CUhpRSlGgVTegDaBZHQL2VA0pmVZ91fZQoaAZoCWgPQwhUi4hi8nFjQJSGlFKUaBVN6ANoFkdAvZZUPOIInnV9lChoBmgJaA9DCGNEotCycWNAlIaUUpRoFU3oA2gWR0C9lmnxri2ldX2UKGgGaAloD0MIpHITtbSeYkCUhpRSlGgVTegDaBZHQL2XHmReTmp1fZQoaAZoCWgPQwj1vvG1Z340QJSGlFKUaBVNBwFoFkdAvZwLdsSCe3V9lChoBmgJaA9DCCqoqPoVf2RAlIaUUpRoFU3oA2gWR0C9nFEDuBtldX2UKGgGaAloD0MIbRtGQXCgY0CUhpRSlGgVTegDaBZHQL2cfTuv2Xd1fZQoaAZoCWgPQwh9y5wuCwtgQJSGlFKUaBVN6ANoFkdAvZ1koCuEEnV9lChoBmgJaA9DCOtwdJXumGBAlIaUUpRoFU3oA2gWR0C9oIvVEuxsdX2UKGgGaAloD0MIz9ptF5qcZECUhpRSlGgVTegDaBZHQL2hvExIre91fZQoaAZoCWgPQwgYmBWKdO1aQJSGlFKUaBVN6ANoFkdAvaNW7ZnL73V9lChoBmgJaA9DCBAIdCZt8VxAlIaUUpRoFU3oA2gWR0C9quOzUqhEdX2UKGgGaAloD0MIYrzmVR0fYUCUhpRSlGgVTegDaBZHQL2sC/UvwmV1fZQoaAZoCWgPQwisAN9tXtRlQJSGlFKUaBVN6ANoFkdAva47RsuWbHV9lChoBmgJaA9DCDlHHR1XZ2JAlIaUUpRoFU3oA2gWR0C9rrBA8jiXdX2UKGgGaAloD0MIJIEGmzohY0CUhpRSlGgVTegDaBZHQL2u9/9Hc1x1fZQoaAZoCWgPQwhPO/w1WfdeQJSGlFKUaBVN6ANoFkdAva8RPHktE3V9lChoBmgJaA9DCB4Zq83/+VxAlIaUUpRoFU3oA2gWR0C9rziX6ZYxdX2UKGgGaAloD0MIMbQ6OUMaYUCUhpRSlGgVTegDaBZHQL2wGcPe54J1fZQoaAZoCWgPQwizsRLzrD1aQJSGlFKUaBVN6ANoFkdAvbCdobn5i3V9lChoBmgJaA9DCIMyjSYXGyzAlIaUUpRoFU0gAWgWR0C9tPvWMCLddX2UKGgGaAloD0MI33AfuTVxQUCUhpRSlGgVTQoBaBZHQL22izOoo/l1fZQoaAZoCWgPQwg5Yi0+BZJhQJSGlFKUaBVN6ANoFkdAvbaTx5LRKHV9lChoBmgJaA9DCHxFt17T0mBAlIaUUpRoFU3oA2gWR0C9tvZRTCLudX2UKGgGaAloD0MIfv578NpIY0CUhpRSlGgVTegDaBZHQL23M4EfT1F1fZQoaAZoCWgPQwgewvhp3EtfQJSGlFKUaBVN6ANoFkdAvbhYEfT1CnV9lChoBmgJaA9DCMN/uoGCnWJAlIaUUpRoFU3oA2gWR0C9u98QiA2AdX2UKGgGaAloD0MIwvaTMT64XECUhpRSlGgVTegDaBZHQL286HSWqtJ1fZQoaAZoCWgPQwgf8wGBzklmQJSGlFKUaBVN6ANoFkdAvb5nQF9roHV9lChoBmgJaA9DCDI5tTNMamJAlIaUUpRoFU3oA2gWR0C9xHJON5t4dX2UKGgGaAloD0MIDOVEuwr+YECUhpRSlGgVTegDaBZHQL3GDZg5R0l1fZQoaAZoCWgPQwh8QnbeRnFkQJSGlFKUaBVN6ANoFkdAvckiFUQ043V9lChoBmgJaA9DCEhS0sPQh2VAlIaUUpRoFU3oA2gWR0C9yb0XUH6edX2UKGgGaAloD0MIklhS7j4RZ0CUhpRSlGgVTegDaBZHQL3KDGoaUA11fZQoaAZoCWgPQwgt6pPcYVFnQJSGlFKUaBVN6ANoFkdAvcpQJmdy1nV9lChoBmgJaA9DCEW5NH7hXmRAlIaUUpRoFU3oA2gWR0C9y8QSFoL5dX2UKGgGaAloD0MIxsTm41q0YkCUhpRSlGgVTegDaBZHQL3OtHaN+9d1fZQoaAZoCWgPQwjWcfxQaWFgQJSGlFKUaBVN6ANoFkdAvc+D7/GVA3V9lChoBmgJaA9DCGGOHr+3HWdAlIaUUpRoFU3oA2gWR0C9z4YoZydXdX2UKGgGaAloD0MI22/tRMmcZECUhpRSlGgVTegDaBZHQL3PudK/VRV1fZQoaAZoCWgPQwjYnlkSIG1hQJSGlFKUaBVN6ANoFkdAvc/duEVWS3V9lChoBmgJaA9DCMXHJ2Tnw2FAlIaUUpRoFU3oA2gWR0C90Iiup0fYdX2UKGgGaAloD0MIRgpl4WtBY0CUhpRSlGgVTegDaBZHQL3S+q6e5Fx1fZQoaAZoCWgPQwhi2cwhKZNhQJSGlFKUaBVN6ANoFkdAvdP32criEXV9lChoBmgJaA9DCL3hPnLrnmJAlIaUUpRoFU3oA2gWR0C91cibhFVldX2UKGgGaAloD0MIuqP/5dpuY0CUhpRSlGgVTegDaBZHQL3W9TXJ5mh1fZQoaAZoCWgPQwgRVI1ejfJgQJSGlFKUaBVN6ANoFkdAvd3ea1Cw8nV9lChoBmgJaA9DCOllFMstPWFAlIaUUpRoFU3oA2gWR0C9393Zf2K3dX2UKGgGaAloD0MIpaFGIUkUYUCUhpRSlGgVTegDaBZHQL3gS9JBgNR1fZQoaAZoCWgPQwh47GexlO5jQJSGlFKUaBVN6ANoFkdAveCRPbfxc3V9lChoBmgJaA9DCLghxmtezmNAlIaUUpRoFU3oA2gWR0C94NrSqlxfdX2UKGgGaAloD0MIkkCDTZ04YkCUhpRSlGgVTegDaBZHQL3iaykKu0V1fZQoaAZoCWgPQwi2heelYttiQJSGlFKUaBVN6ANoFkdAveaQe0XxfHV9lChoBmgJaA9DCF03pbzWQmZAlIaUUpRoFU3oA2gWR0C95+qScLBsdX2UKGgGaAloD0MIy2Wjc359Y0CUhpRSlGgVTegDaBZHQL3n8qoZQ551fZQoaAZoCWgPQwivIqMDEpZkQJSGlFKUaBVN6ANoFkdAvehDcj7hvXV9lChoBmgJaA9DCK/uWGyTmV1AlIaUUpRoFU3oA2gWR0C96HBOpKjBdX2UKGgGaAloD0MIMnVXdkEaZkCUhpRSlGgVTegDaBZHQL3pMg/Tspp1fZQoaAZoCWgPQwg10HzOXRpkQJSGlFKUaBVN6ANoFkdAvev0nfEXL3V9lChoBmgJaA9DCDTbFfpg80JAlIaUUpRoFU0HAWgWR0C97NkHD766dX2UKGgGaAloD0MIvtpRnCMIZECUhpRSlGgVTegDaBZHQL3s+eumrKh1fZQoaAZoCWgPQwjvjSEAeHRxQJSGlFKUaBVNOwJoFkdAve3GbONYKnV9lChoBmgJaA9DCMSxLm6jIWlAlIaUUpRoFU3oA2gWR0C97laDwpfAdX2UKGgGaAloD0MIiPGaV/VMb0CUhpRSlGgVTQADaBZHQL3u3Cb+cYt1fZQoaAZoCWgPQwjCilOtBZdhQJSGlFKUaBVN6ANoFkdAve8rpljEvXV9lChoBmgJaA9DCOFASBYwBWFAlIaUUpRoFU3oA2gWR0C99oZCfHxSdX2UKGgGaAloD0MIlGk0uZjHYUCUhpRSlGgVTegDaBZHQL34mX9zfaZ1fZQoaAZoCWgPQwgdsKvJU3FlQJSGlFKUaBVN6ANoFkdAvflJ08vEj3V9lChoBmgJaA9DCDWWsDZGMGVAlIaUUpRoFU3oA2gWR0C9+Y8xGlQ/dX2UKGgGaAloD0MIgV64c2EzUECUhpRSlGgVS+FoFkdAvfwJWxQizXV9lChoBmgJaA9DCCk900uMuGtAlIaUUpRoFU37AWgWR0C9/TXRXwLFdX2UKGgGaAloD0MIMCsU6f4tY0CUhpRSlGgVTegDaBZHQL39vOCGvfV1fZQoaAZoCWgPQwixpx3+mrthQJSGlFKUaBVN6ANoFkdAvf5wzGgi/3V9lChoBmgJaA9DCDW0AdgAFG1AlIaUUpRoFU2SAmgWR0C9/msu8K5TdX2UKGgGaAloD0MISS9q9yu2ZkCUhpRSlGgVTegDaBZHQL3+cltCRfZ1fZQoaAZoCWgPQwjBVZ5A2EJnQJSGlFKUaBVN6ANoFkdAvf6igmJFb3V9lChoBmgJaA9DCK66DtUUQnFAlIaUUpRoFU0hAmgWR0C9/t0hNdqtdX2UKGgGaAloD0MIdnCwN7FnZECUhpRSlGgVTegDaBZHQL3/Rdd3Srp1fZQoaAZoCWgPQwh1ApoIG4ZMQJSGlFKUaBVL8mgWR0C9/18dHUc5dX2UKGgGaAloD0MIgA9eu7RNOUCUhpRSlGgVTRcBaBZHQL4BQTYdyT91fZQoaAZoCWgPQwica5ih8RljQJSGlFKUaBVN6ANoFkdAvgFeTFERa3V9lChoBmgJaA9DCCI3ww34LF5AlIaUUpRoFU3oA2gWR0C+AlBZpztDdX2UKGgGaAloD0MI8rBQaxozYkCUhpRSlGgVTegDaBZHQL4CdLqUu+R1fZQoaAZoCWgPQwhjmBO0yR1EQJSGlFKUaBVL8mgWR0C+AsnKW9lFdX2UKGgGaAloD0MIOWItPgWDZECUhpRSlGgVTegDaBZHQL4D+izcAR11fZQoaAZoCWgPQwh5O8JpwU9xQJSGlFKUaBVNjwFoFkdAvgR2606YFHV9lChoBmgJaA9DCM7/q46cKGNAlIaUUpRoFU3oA2gWR0C+BPcTrVvudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 2, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54f9633c604c30a8a8c64acda5b2b3623220f8a74f487687e8613cb15c6f6f2b
3
+ size 151080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff340f75160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff340f751f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff340f75280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff340f75310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff340f753a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff340f75430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff340f754c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff340f75550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff340f755e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff340f75670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff340f75700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff340f75790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff340f6e810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 42,
50
+ "action_noise": null,
51
+ "start_time": 1676052213642870355,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1AHb4H6aU+pBI8Pex2gr48XUw7JrXkPQAAAAAAAAAAzeumPK5Hk7pWpcW7bQutOKQdFbtjYVs6AACAPwAAgD/N4YU9TuS6PWtOJr70WRq+QdgkvVS5m7wAAAAAAAAAAM3kVDtcOwq6TCUjtRH8pi9Tsz27brhfNAAAgD8AAIA/7fY8vsELcT5zGIQ+RXXIvt8kmT0lBok9AAAAAAAAAACNuqQ+6+8vP2/hxL3m0YK+dsBTPcrZY70AAAAAAAAAAJqNyrusitA8LqsGvSe0Xr4h6SG9lbVFPAAAAAAAAAAATSGcvUgrmLpQg6O6UYCyNTOMHLqr3bw5AAAAAAAAgD+tLYW+TYI/PpNMeT5ZZ5K+2xkrPUiMkjwAAAAAAAAAAHpS1T4W9HI/7ocMvQJAyL7/m74+riIDvgAAAAAAAAAAgMTPvSmgPbrDpAK516i1s4h5Orr4Wxg4AACAPwAAAADm0mG9wXeLPz7J4b3rDoe+VvubvXH/IbwAAAAAAAAAAOaxPL1ce2O6lK2RNymUmzIt0Ls6PZ6qtgAAgD8AAIA/AMDeO66jl7oV8067S+9QN4jG5Tqy/K62AACAPwAAgD/Nk4689oxzuhjDj7kpLpC0D21sObcYqDgAAIA/AACAPwDktL2P1ni6MtN5uw0fmDj/Q4e5fXvXOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkdRCyeRfZkCUhpRSlIwBbJRN6AOMAXSUR0C9fZeX7cfvdX2UKGgGaAloD0MINuSfGcQXW0CUhpRSlGgVTegDaBZHQL2A1yfL9uR1fZQoaAZoCWgPQwi2hlJ7EZhqQJSGlFKUaBVNagJoFkdAvYEDjzZpSXV9lChoBmgJaA9DCE4qGmt/zmZAlIaUUpRoFU3oA2gWR0C9gegB91EFdX2UKGgGaAloD0MIeXjPgWXvZECUhpRSlGgVTegDaBZHQL2FV7Dl5nl1fZQoaAZoCWgPQwidSDDVTMBiQJSGlFKUaBVN6ANoFkdAvYcml3yI6HV9lChoBmgJaA9DCMr7OJojqGRAlIaUUpRoFU3oA2gWR0C9jw2y9mHydX2UKGgGaAloD0MIz04GR8mNYkCUhpRSlGgVTegDaBZHQL2QEf4REnd1fZQoaAZoCWgPQwgSE9TwLWhdQJSGlFKUaBVN6ANoFkdAvZFIi6g/T3V9lChoBmgJaA9DCAGKkSVzLF5AlIaUUpRoFU3oA2gWR0C9k6/fsNUgdX2UKGgGaAloD0MIrtUe9kJvYECUhpRSlGgVTegDaBZHQL2UMmeUY9B1fZQoaAZoCWgPQwjej9svnw1gQJSGlFKUaBVN6ANoFkdAvZSSpfhMrXV9lChoBmgJaA9DCKUyxRyEmGdAlIaUUpRoFU1AA2gWR0C9lLv5P/JedX2UKGgGaAloD0MIlKRrJl/3Y0CUhpRSlGgVTegDaBZHQL2VA0pmVZ91fZQoaAZoCWgPQwhUi4hi8nFjQJSGlFKUaBVN6ANoFkdAvZZUPOIInnV9lChoBmgJaA9DCGNEotCycWNAlIaUUpRoFU3oA2gWR0C9lmnxri2ldX2UKGgGaAloD0MIpHITtbSeYkCUhpRSlGgVTegDaBZHQL2XHmReTmp1fZQoaAZoCWgPQwj1vvG1Z340QJSGlFKUaBVNBwFoFkdAvZwLdsSCe3V9lChoBmgJaA9DCCqoqPoVf2RAlIaUUpRoFU3oA2gWR0C9nFEDuBtldX2UKGgGaAloD0MIbRtGQXCgY0CUhpRSlGgVTegDaBZHQL2cfTuv2Xd1fZQoaAZoCWgPQwh9y5wuCwtgQJSGlFKUaBVN6ANoFkdAvZ1koCuEEnV9lChoBmgJaA9DCOtwdJXumGBAlIaUUpRoFU3oA2gWR0C9oIvVEuxsdX2UKGgGaAloD0MIz9ptF5qcZECUhpRSlGgVTegDaBZHQL2hvExIre91fZQoaAZoCWgPQwgYmBWKdO1aQJSGlFKUaBVN6ANoFkdAvaNW7ZnL73V9lChoBmgJaA9DCBAIdCZt8VxAlIaUUpRoFU3oA2gWR0C9quOzUqhEdX2UKGgGaAloD0MIYrzmVR0fYUCUhpRSlGgVTegDaBZHQL2sC/UvwmV1fZQoaAZoCWgPQwisAN9tXtRlQJSGlFKUaBVN6ANoFkdAva47RsuWbHV9lChoBmgJaA9DCDlHHR1XZ2JAlIaUUpRoFU3oA2gWR0C9rrBA8jiXdX2UKGgGaAloD0MIJIEGmzohY0CUhpRSlGgVTegDaBZHQL2u9/9Hc1x1fZQoaAZoCWgPQwhPO/w1WfdeQJSGlFKUaBVN6ANoFkdAva8RPHktE3V9lChoBmgJaA9DCB4Zq83/+VxAlIaUUpRoFU3oA2gWR0C9rziX6ZYxdX2UKGgGaAloD0MIMbQ6OUMaYUCUhpRSlGgVTegDaBZHQL2wGcPe54J1fZQoaAZoCWgPQwizsRLzrD1aQJSGlFKUaBVN6ANoFkdAvbCdobn5i3V9lChoBmgJaA9DCIMyjSYXGyzAlIaUUpRoFU0gAWgWR0C9tPvWMCLddX2UKGgGaAloD0MI33AfuTVxQUCUhpRSlGgVTQoBaBZHQL22izOoo/l1fZQoaAZoCWgPQwg5Yi0+BZJhQJSGlFKUaBVN6ANoFkdAvbaTx5LRKHV9lChoBmgJaA9DCHxFt17T0mBAlIaUUpRoFU3oA2gWR0C9tvZRTCLudX2UKGgGaAloD0MIfv578NpIY0CUhpRSlGgVTegDaBZHQL23M4EfT1F1fZQoaAZoCWgPQwgewvhp3EtfQJSGlFKUaBVN6ANoFkdAvbhYEfT1CnV9lChoBmgJaA9DCMN/uoGCnWJAlIaUUpRoFU3oA2gWR0C9u98QiA2AdX2UKGgGaAloD0MIwvaTMT64XECUhpRSlGgVTegDaBZHQL286HSWqtJ1fZQoaAZoCWgPQwgf8wGBzklmQJSGlFKUaBVN6ANoFkdAvb5nQF9roHV9lChoBmgJaA9DCDI5tTNMamJAlIaUUpRoFU3oA2gWR0C9xHJON5t4dX2UKGgGaAloD0MIDOVEuwr+YECUhpRSlGgVTegDaBZHQL3GDZg5R0l1fZQoaAZoCWgPQwh8QnbeRnFkQJSGlFKUaBVN6ANoFkdAvckiFUQ043V9lChoBmgJaA9DCEhS0sPQh2VAlIaUUpRoFU3oA2gWR0C9yb0XUH6edX2UKGgGaAloD0MIklhS7j4RZ0CUhpRSlGgVTegDaBZHQL3KDGoaUA11fZQoaAZoCWgPQwgt6pPcYVFnQJSGlFKUaBVN6ANoFkdAvcpQJmdy1nV9lChoBmgJaA9DCEW5NH7hXmRAlIaUUpRoFU3oA2gWR0C9y8QSFoL5dX2UKGgGaAloD0MIxsTm41q0YkCUhpRSlGgVTegDaBZHQL3OtHaN+9d1fZQoaAZoCWgPQwjWcfxQaWFgQJSGlFKUaBVN6ANoFkdAvc+D7/GVA3V9lChoBmgJaA9DCGGOHr+3HWdAlIaUUpRoFU3oA2gWR0C9z4YoZydXdX2UKGgGaAloD0MI22/tRMmcZECUhpRSlGgVTegDaBZHQL3PudK/VRV1fZQoaAZoCWgPQwjYnlkSIG1hQJSGlFKUaBVN6ANoFkdAvc/duEVWS3V9lChoBmgJaA9DCMXHJ2Tnw2FAlIaUUpRoFU3oA2gWR0C90Iiup0fYdX2UKGgGaAloD0MIRgpl4WtBY0CUhpRSlGgVTegDaBZHQL3S+q6e5Fx1fZQoaAZoCWgPQwhi2cwhKZNhQJSGlFKUaBVN6ANoFkdAvdP32criEXV9lChoBmgJaA9DCL3hPnLrnmJAlIaUUpRoFU3oA2gWR0C91cibhFVldX2UKGgGaAloD0MIuqP/5dpuY0CUhpRSlGgVTegDaBZHQL3W9TXJ5mh1fZQoaAZoCWgPQwgRVI1ejfJgQJSGlFKUaBVN6ANoFkdAvd3ea1Cw8nV9lChoBmgJaA9DCOllFMstPWFAlIaUUpRoFU3oA2gWR0C9393Zf2K3dX2UKGgGaAloD0MIpaFGIUkUYUCUhpRSlGgVTegDaBZHQL3gS9JBgNR1fZQoaAZoCWgPQwh47GexlO5jQJSGlFKUaBVN6ANoFkdAveCRPbfxc3V9lChoBmgJaA9DCLghxmtezmNAlIaUUpRoFU3oA2gWR0C94NrSqlxfdX2UKGgGaAloD0MIkkCDTZ04YkCUhpRSlGgVTegDaBZHQL3iaykKu0V1fZQoaAZoCWgPQwi2heelYttiQJSGlFKUaBVN6ANoFkdAveaQe0XxfHV9lChoBmgJaA9DCF03pbzWQmZAlIaUUpRoFU3oA2gWR0C95+qScLBsdX2UKGgGaAloD0MIy2Wjc359Y0CUhpRSlGgVTegDaBZHQL3n8qoZQ551fZQoaAZoCWgPQwivIqMDEpZkQJSGlFKUaBVN6ANoFkdAvehDcj7hvXV9lChoBmgJaA9DCK/uWGyTmV1AlIaUUpRoFU3oA2gWR0C96HBOpKjBdX2UKGgGaAloD0MIMnVXdkEaZkCUhpRSlGgVTegDaBZHQL3pMg/Tspp1fZQoaAZoCWgPQwg10HzOXRpkQJSGlFKUaBVN6ANoFkdAvev0nfEXL3V9lChoBmgJaA9DCDTbFfpg80JAlIaUUpRoFU0HAWgWR0C97NkHD766dX2UKGgGaAloD0MIvtpRnCMIZECUhpRSlGgVTegDaBZHQL3s+eumrKh1fZQoaAZoCWgPQwjvjSEAeHRxQJSGlFKUaBVNOwJoFkdAve3GbONYKnV9lChoBmgJaA9DCMSxLm6jIWlAlIaUUpRoFU3oA2gWR0C97laDwpfAdX2UKGgGaAloD0MIiPGaV/VMb0CUhpRSlGgVTQADaBZHQL3u3Cb+cYt1fZQoaAZoCWgPQwjCilOtBZdhQJSGlFKUaBVN6ANoFkdAve8rpljEvXV9lChoBmgJaA9DCOFASBYwBWFAlIaUUpRoFU3oA2gWR0C99oZCfHxSdX2UKGgGaAloD0MIlGk0uZjHYUCUhpRSlGgVTegDaBZHQL34mX9zfaZ1fZQoaAZoCWgPQwgdsKvJU3FlQJSGlFKUaBVN6ANoFkdAvflJ08vEj3V9lChoBmgJaA9DCDWWsDZGMGVAlIaUUpRoFU3oA2gWR0C9+Y8xGlQ/dX2UKGgGaAloD0MIgV64c2EzUECUhpRSlGgVS+FoFkdAvfwJWxQizXV9lChoBmgJaA9DCCk900uMuGtAlIaUUpRoFU37AWgWR0C9/TXRXwLFdX2UKGgGaAloD0MIMCsU6f4tY0CUhpRSlGgVTegDaBZHQL39vOCGvfV1fZQoaAZoCWgPQwixpx3+mrthQJSGlFKUaBVN6ANoFkdAvf5wzGgi/3V9lChoBmgJaA9DCDW0AdgAFG1AlIaUUpRoFU2SAmgWR0C9/msu8K5TdX2UKGgGaAloD0MISS9q9yu2ZkCUhpRSlGgVTegDaBZHQL3+cltCRfZ1fZQoaAZoCWgPQwjBVZ5A2EJnQJSGlFKUaBVN6ANoFkdAvf6igmJFb3V9lChoBmgJaA9DCK66DtUUQnFAlIaUUpRoFU0hAmgWR0C9/t0hNdqtdX2UKGgGaAloD0MIdnCwN7FnZECUhpRSlGgVTegDaBZHQL3/Rdd3Srp1fZQoaAZoCWgPQwh1ApoIG4ZMQJSGlFKUaBVL8mgWR0C9/18dHUc5dX2UKGgGaAloD0MIgA9eu7RNOUCUhpRSlGgVTRcBaBZHQL4BQTYdyT91fZQoaAZoCWgPQwica5ih8RljQJSGlFKUaBVN6ANoFkdAvgFeTFERa3V9lChoBmgJaA9DCCI3ww34LF5AlIaUUpRoFU3oA2gWR0C+AlBZpztDdX2UKGgGaAloD0MI8rBQaxozYkCUhpRSlGgVTegDaBZHQL4CdLqUu+R1fZQoaAZoCWgPQwhjmBO0yR1EQJSGlFKUaBVL8mgWR0C+AsnKW9lFdX2UKGgGaAloD0MIOWItPgWDZECUhpRSlGgVTegDaBZHQL4D+izcAR11fZQoaAZoCWgPQwh5O8JpwU9xQJSGlFKUaBVNjwFoFkdAvgR2606YFHV9lChoBmgJaA9DCM7/q46cKGNAlIaUUpRoFU3oA2gWR0C+BPcTrVvudWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 32,
87
+ "n_epochs": 2,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9094c6f58a8ec48c4eaf773f2fb2aed7359fd6c81cde735b5b104ec848a36a6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4472b7bfeaf822812ef72661ebac3731caca3b0c4df847a9fdd02f12efb8a00e
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (204 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 243.22014291199602, "std_reward": 15.017159563831383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-10T18:32:05.461146"}